Cheatography

Automata Cheat Sheet

by Vipera via cheatography.com/128346/cs/25093/

DFA (Deterministic Finite Automaton)		
Automaton Representation	$M {=} (Q, \! \Sigma, \! \delta, \! q 0, \! F)$	
Q: Set of states	{q0,q1,q2}	
Σ: input alphabet	$\{a,b\} \ \& \ \epsilon \not\in \Sigma$	
8: transition function	$\delta(q,x)=q'$	
q0: initial state		
F: set of accepting states	{q2}	
Language of Automaton	$L(M)=\{ w \in \Sigma^* : \delta^* \\ (q0,w) \in F \}$	

Languages are regular if a DFA exists for

DFA: Each state has one transition for

NFA (Non-deterministic Finite
Automaton)

that language.

evrey alphabet

Formal Definition	$M {=} (Q, \! \Sigma, \! \Delta, \! S, \! F)$
Q: Set of states	{q0,q1,q2}
Σ: input alphabet	{a,b}
Δ: transition function	$ \Delta(q,x) = \{q1,q2,\} $ (include ϵ)
S: initial states	{q0}
F: set of accepting states	{q2}
Language of Automaton	$L(M) = \{w1, w2,, wn\}$

NFA: Each state can have different transition with the same language output

NFA to DFA Conversion

- 1. Set initial state of NFA to initial state of DFA
- 2. Take the states in the DFA, and compute in the NFA what the union Δ of those states for each letter in the alphabet and add them as new states in the DFA.

For example if (q0,a) takes you to {q1,q2} add a state {q1,q2}. If there isn't one, the add state null

NFA to	DFA Co	nversior	ı (cont)

3. Set every DFA state as accepting if it contains an accepting state from the NFA

The language for the NFA (M) and DFA (M') are equivalent $L(M) = L(M') \label{eq:language}$

Properties of Regex

Properties of	Properties of negex	
L1 U L2	Initial state has two ϵ transitions, one to L1 and one to L2	
L1L2	L1 accept state tranitions (ϵ) to L2 initial state	
L1*	New initial state transitions to L1 initial state. New accept state transitions (ϵ) from L1 accept state. Initial to accept state transition transitions (ϵ) and vice versa.	
L1 ^R (reverse)	Reverse all transitions. Make initial state accepting state and vice versa.	
!(L1) Complement	Accepting states become non-accepting and vice versa	
L1 ∩ L2	!(!(L1) U !(L2))	

P.S. To turn multiple states to one accept state in an NFA, just add a new accept state, and add transition to the old accept states with language ϵ .

Intersection DFA1 \cap DFA2

Transitions M^1 : $q1 \rightarrow^a \rightarrow q2$ M^2 : $p1 \rightarrow^a \rightarrow p2$	DFA M: $(q1,p1) \rightarrow a \rightarrow (q2,p2)$
Initial State M¹: q0 M²: p0	DFA M: (q0,p0)
Accept State M ¹ : qi M ² : pj,pk	DFA M: (qi,pj) , (qi,pk)

Regular Expressions		
L(r1+r2)	= L(r1) U L(r2)	
L(r1•r2)	= L(r1)L(r2)	
L(r1*)	= (L(r1))*	
L(a)	= {a}	

NFA to Regular Language

Precedence: * \rightarrow * \rightarrow • \rightarrow +

- 1. Transform each transition into regex (e.g. (a,b) is a+b
- 2. Remove each state one by one, until you are left with the initial and accepting state
- 3. Resulting regular expression: r = r1*r2(r4+r3r1*r2)* where:
- r1: initial → initial
- r2: initial → accepting
- r3: accepting → initial
- r4: accepting → accepting

Proving Regularity with Pumping Lemma

Prove than an infinite language L is not regular:

- 1. Assume L is regular
- 2. The pumping lemma should hold for L
- 3. Use the pumping lemma to obtain a contradiction:
- a. Let m be the critical length for L
- b. Choose a particular string $w \in L$ which satisfies the length condition $|w| \ge m$
- c. Write w=xyz
- d. Show that $w'=xy^iz \not\in L$ for some $i\neq 1$

By N chea

By **Vipera** cheatography.com/vipera/

Published 11th December, 2020. Last updated 12th December, 2020. Page 1 of 1. Sponsored by **Readable.com**Measure your website readability!
https://readable.com