CFG Definition	
Context-Free Grammar:	$\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{S}, \mathrm{P})$
V : Set of variables	\{S\}
T: Set of terminal symbols	\{a,b\}
S: Start variable	S
P: Set of productions	$\{S \rightarrow \mathrm{aSb}, \mathrm{S} \rightarrow \varepsilon$ \}
ONLY ONE variable \rightarrow String of variables and terminals	
Union of Two Languages	
Example: \quad L	$\begin{aligned} & L=\left\{0^{n} 1^{n} \mid n \geq 0\right\} \cup \\ & \left\{1^{n} 0^{n} \mid n \geq 0\right\} \end{aligned}$
Break problem in two	$\begin{aligned} & \mathbf{s}^{1} \rightarrow 0 S^{1} 1 \mid \varepsilon \\ & \mathbf{s}^{2} \rightarrow 1 S^{2} 0 \mid \varepsilon \end{aligned}$
Merge	$\begin{aligned} & { }^{1} \mid S^{2} \\ & S^{1} 1 \mid \varepsilon \\ & S^{2} 0 \mid \varepsilon \end{aligned}$

Simplifications of CFG		
Substitution $\left(B \rightarrow y^{1}\right)$	$\begin{aligned} & \mathrm{A} \rightarrow \mathrm{xBz} \\ & \mathrm{~B} \rightarrow \mathrm{y}^{1} \end{aligned}$	$\mathrm{A} \rightarrow \mathrm{xBz} \mid \times{ }^{1}{ }^{1}$
	$\begin{aligned} & \mathrm{A} \rightarrow \mathrm{xBBz} \\ & \mathrm{~B} \rightarrow \mathrm{y}^{1} \end{aligned}$	$\begin{aligned} & \mathrm{A} \rightarrow \mathrm{xBBz} \mid \times B y^{1} \mathrm{z} \\ & \left\|\mathrm{xy}{ }^{1} \mathrm{Bz}\right\| x y^{1} \mathrm{y}^{1} \mathrm{z} \end{aligned}$

$\begin{array}{lll}\begin{array}{ll}\text { Removing } \varepsilon & \mathrm{A} \rightarrow \mathrm{xBz} \\ (B \rightarrow \varepsilon) & \mathrm{B} \rightarrow \varepsilon\end{array} & \mathrm{A} \rightarrow \mathrm{xBz} \mid \mathrm{xz} \\ \text { Unit } & \mathrm{A} \rightarrow \mathrm{B} & \mathrm{A} \rightarrow \mathrm{bb} \\ \text { Production } & \mathrm{B} \rightarrow \mathrm{bb} & \mathrm{B} \rightarrow \mathrm{bb}\end{array}$
($A \rightarrow B$)

Useless	$\mathrm{A} \rightarrow \mathrm{aA}$	\therefore remove
Productions	(infinite)	
	Unreac- hable from S	\therefore remove

Step 1: Remove Nullable Variables
Step 2: Remove Unit-Production
Step 3: Remove Useless Variables

By Vipera

cheatography.com/vipera/

DFA to CFG

1. Create variable $\mathbf{R}^{\mathbf{i}}$ for every state $\mathbf{q}^{\mathbf{i}}$
2. Create rule $\mathbf{R}^{\mathbf{i}} \rightarrow \mathbf{a} \mathbf{R}^{\mathbf{j}}$ for every transition $\delta\left(q^{i}, a\right) \rightarrow q^{j}$
3. For accept states $\mathbf{q}^{\mathbf{i}}$ create rule $\mathbf{R}^{\mathbf{i}} \rightarrow \boldsymbol{\varepsilon}$
4. For initial state $\mathbf{q}^{\mathbf{0}}$ make $\mathbf{R}^{\mathbf{0}}$ the start variable

Conversion to Chomsky Normal Form

Step 0: If start symbol (S) is on the right hand side, change start symbol $S^{0} \rightarrow S$

Step 1: Remove Nullable variables $(A \rightarrow \varepsilon)$ and Unit productions $(A \rightarrow B)$

Step 2: For every symbol a add $T^{a} \rightarrow a$
Step 3: Replace $A \rightarrow C^{1} C^{2} \ldots C^{n}$ with
$A \rightarrow C^{1} V^{1}$
$V^{1} \rightarrow C^{2} V^{2}$
$V^{n-2} \rightarrow C^{n-1} C^{n}$

Chomsky form only has productions in
forms
$A \rightarrow B C$
$A \rightarrow a$

Greibach Normal Form	
All Productions have	$\mathrm{A} \rightarrow \mathrm{aV}^{1} \mathrm{~V}^{2} . . \mathrm{V}^{k}:$
form:	$\mathrm{k} \geq 0$
Example	
$\mathrm{S} \rightarrow \mathrm{abSb}$	$\mathrm{S} \rightarrow \mathrm{a}^{\mathrm{b}} \mathrm{ST}^{\mathrm{b}}$
$\mathrm{S} \rightarrow \mathrm{aa}$	$\mathrm{S} \rightarrow \mathrm{aT} \mathrm{T}^{\mathrm{a}}$
	$\mathrm{T}^{\mathrm{a}} \rightarrow \mathrm{a}$
	$\mathrm{T}^{\mathrm{b}} \rightarrow \mathrm{b}$

PDA

Transitions: $\mathbf{a}, \mathbf{b} \rightarrow \mathbf{c}$ means when input is a, remove b from stack and add c
If the automaton attempts to pop from empty stack then it halts and rejects input.

Published 12th December, 2020.
Last updated 12th December, 2020.
Page 1 of 2.
$\left.\begin{array}{|ll|}\hline \text { PDA (cont) } \\ \hline & \text { A string is accepted if there is a comput- } \\ \text { ation such that: } \\ \text { All the input is consumed }\end{array}\right\}$

CFG to PDA

Start with PDA of $q 0 \rightarrow \varepsilon, \varepsilon \rightarrow S \rightarrow q 1 \rightarrow \varepsilon, \$ \rightarrow-$ $\$ \rightarrow q 2$

For each CFG production $A \rightarrow w$ add $\boldsymbol{\varepsilon}, \mathbf{A} \rightarrow \mathbf{w}$ For each CFG terminal a add $\mathbf{a}, \mathbf{a} \rightarrow \boldsymbol{\varepsilon}$

"Easy" PDA to CFG

For the pair of transitions:

$$
\rightarrow \rightarrow^{\mathrm{a}, \varepsilon \rightarrow \mathrm{t}} \rightarrow \quad \rightarrow{ }^{\mathrm{b}, \mathrm{t} \rightarrow \varepsilon} \rightarrow
$$

Add the production: $A^{p q} \rightarrow a A^{r s b}$
For each state \mathbf{p} add: $\mathrm{APp}_{\rightarrow \varepsilon}$
For each state-triple (p, q, r) add: $A^{p^{r}} \rightarrow A^{p-}$ $q_{A}{ }^{q r}$

For initial state and accept state:

$$
\rightarrow \&
$$

Add the production: $\mathrm{S} \rightarrow \mathrm{A}^{0 \mathrm{a}}$

Easy PDAs:

- Have only 1 accept state
- When accepting a string, the stack is empty (only inital symbol)
- Each transition pushes or pops

Sponsored by Readable.com

Measure your website readability!
https://readable.com

PDA to "Easy" PDA	
1. The PDA has a single accept state	Create new accept state and make $\varepsilon, \varepsilon \rightarrow \varepsilon$ transitions from old accept states to the new
2. Use new initial stack symbol \#	New initial state, that transitions to a new state with $\varepsilon, \varepsilon \rightarrow @$ (auxiliary symbol) that transitions to the old initial state with $\varepsilon, \varepsilon \rightarrow \$$
3. On acceptance the stack contains only stack symbol \#	Old accept state transitions to new to new accept state with $\varepsilon, @ \rightarrow \varepsilon$, $\alpha v \delta$ self loops with $\varepsilon, x \rightarrow \varepsilon$ where $\forall x \in \Gamma-\{@, \#\}$
4. Transitions can't push and pop	Replace any $\rightarrow^{\sigma, a \rightarrow b} \rightarrow$ with $\rightarrow^{\sigma, a \rightarrow \varepsilon} \rightarrow \rightarrow^{\varepsilon, \varepsilon \rightarrow \mathrm{b}} \rightarrow$
5. 4. Transitions can't neither push nor pop	Replace any $\rightarrow \rightarrow^{\sigma, \varepsilon \rightarrow \varepsilon} \rightarrow$ with $\rightarrow \rightarrow^{\sigma, \varepsilon \rightarrow \partial} \rightarrow \rightarrow^{\varepsilon, \partial \rightarrow \varepsilon} \rightarrow$

By Vipera
cheatography.com/vipera/

Published 12th December, 2020. Last updated 12th December, 2020. Page 2 of 2.

Sponsored by Readable.com

Measure your website readability! https://readable.com

