Cheatography

Automata - CFG & PDA Cheat Sheet

by Vipera via cheatography.com/128346/cs/25668/

CFG Definition	
Context-Free Grammar:	G = (V,T,S,P)
V: Set of variables	{S}
T: Set of terminal symbols	{a,b}
S: Start variable	S
P: Set of productions	$\{S \rightarrow aSb, S \rightarrow \epsilon\}$

ONLY ONE variable \rightarrow String of variables and terminals

Union of Two Languages

Example:	L= $\{0^n1^n n\ge 0\}$ U $\{1^n0^n n\ge 0\}$
Break problem in two	$S^1 \rightarrow 0S^11 \epsilon$ $S^2 \rightarrow 1S^20 \epsilon$
Merge	$S \rightarrow S^{1} S^{2}$ $S^{1} \rightarrow 0S^{1}1 \epsilon$ $S^{2} \rightarrow 1S^{2}0 \epsilon$

Simplifications of CFG

Substitution $(B \rightarrow y^1)$	A→xBz B→y ¹	A→xBz xy ¹ z
	A→xBBz B→y ¹	$A \rightarrow xBBz xBy^1z$ $ xy^1Bz xy^1y^1z$
Removing ε $(B \to \varepsilon)$	A→xBz B→ε	A→xBz xz
Unit Production $(A \rightarrow B)$	A→B B→bb	A→bb B→bb
Useless Productions	A→aA (infinite)	∴ remove
	Unreac- hable from S	∴ remove

Step 1: Remove Nullable Variables Step 2: Remove Unit-Production

Step 3: Remove Useless Variables

DFA to CFG

1. Create variable $\mathbf{R}^{\mathbf{i}}$ for every state $\mathbf{q}^{\mathbf{i}}$

2. Create rule $R^i \to a R^j$ for every transition $\delta(q^i,a) \to q^j$

3. For accept states q^i create rule $R^i \to \epsilon$

4. For initial state q^0 make R^0 the start variable

Conversion to Chomsky Normal Form

Step 0: If start symbol (S) is on the right hand side, change start symbol $S^0 \rightarrow S$ Step 1: Remove Nullable variables $(A \rightarrow \varepsilon)$ and Unit productions $(A \rightarrow B)$ Step 2: For every symbol a add $T^a \rightarrow a$ Step 3: Replace $A \rightarrow C^1C^2...C^n$ with $A \rightarrow C^1V^1$ $V^1 \rightarrow C^2V^2$

Chomsky form only has productions in forms

 $V^{n-2} \rightarrow C^{n-1}C^n$

A→BC A→a

Greibach Normal Form

All Productions have	$A{ ightarrow}aV^1V^2V^k$:
form:	k≥0
Example	
S→abSb	$S \rightarrow aT^bST^b$
S→aa	S→aT ^a
	T ^a →a
	$T^b \rightarrow b$

PDA

Transitions: $\mathbf{a}, \mathbf{b} \to \mathbf{c}$ means when input is a, remove b from stack and add c

If the automaton attempts to pop from empty stack then it halts and rejects input.

Published 12th December, 2020. Last updated 12th December, 2020. Page 1 of 2.

PDA (cont)

A string is accepted if there is a computation such that:

All the input is consumed

The last state is an accepting state

PDA Formalities	
PDA Representation	M=(Q,Σ,- Γ,δ,q0,z,F)
Q: States	{q0,q1,q2}
Σ: Input Alphabet	{a,b}
Γ: Stack Alphabet	{a,b,\$}
8: Transition Functions	$\delta(q,a,w1)=\{(-q2,w2)\}$
q0: Initial State	q0
z: Stack Start Symbol	\$
F: Accept States	{q2}

CFG to PDA

Start with PDA of q0 \rightarrow $^{\epsilon,\epsilon\rightarrow S}\rightarrow$ q1 \rightarrow $^{\epsilon,\$\rightarrow -}$ \$ \rightarrow q2

For each CFG production $A \rightarrow w$ add $\epsilon, A \rightarrow w$

For each CFG terminal a add $a,a \rightarrow \varepsilon$

"Easy" PDA to CFG

For the pair of transitions: $\rightarrow a, \epsilon \rightarrow t \rightarrow b, t \rightarrow \epsilon \rightarrow$

Add the production: $A^{pq} \rightarrow aA^{rs}b$ For each state \mathbf{p} add: $A^{pp} \rightarrow \epsilon$ For each state-triple (p,q,r) add: $A^{pr} \rightarrow A^{p-}$

For initial state and accept state:

 \rightarrow 8

Add the production: $S \rightarrow A^{0a}$

Easy PDAs:

 q_Aqr

- · Have only 1 accept state
- When accepting a string, the stack is empty (only inital symbol)
- Each transition pushes or pops

C

By Vipera

cheatography.com/vipera/

Sponsored by **Readable.com**Measure your website readability!
https://readable.com

Automata - CFG & PDA Cheat Sheet

by Vipera via cheatography.com/128346/cs/25668/

PDA to "Easy" PDA		
1. The PDA has a single accept state	Create new accept state and make $\epsilon,\epsilon\!\to\!\epsilon$ transitions from old accept states to the new	
2. Use new initial stack symbol #	New initial state, that transitions to a new state with $\varepsilon,\varepsilon\to @$ (auxiliary symbol) that transitions to the old initial state with $\varepsilon,\varepsilon\to $$	
3. On acceptance the stack contains only stack symbol #	Old accept state transitions to new to new accept state with ϵ ,@ \rightarrow ϵ , α v δ self loops with ϵ ,x \rightarrow ϵ where \forall x \in \Gamma-{@,#}	
4. Transitions can't push and pop	Replace any	
5. 4. Transitions can't neither push nor pop	Replace any $ \rightarrow^{\sigma,\epsilon \rightarrow \epsilon} \rightarrow $ with	

By **Vipera** cheatography.com/vipera/

 $\rightarrow^{\sigma,\epsilon\rightarrow\partial}\rightarrow\rightarrow^{\epsilon,\partial\rightarrow\epsilon}\rightarrow$

Published 12th December, 2020. Last updated 12th December, 2020. Page 2 of 2. Sponsored by **Readable.com**Measure your website readability!
https://readable.com