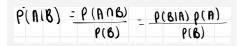
OIDD Cheat Sheet

Cheatography

by vicy12341 via cheatography.com/144393/cs/30992/

Lecture 2	
Flow Rate	Min between demand and capacity
Utilization = R/Capacity	fraction of time spent working
Cycle Time = 1/ Flow Rate	Time between when units exit process
Flow Time = I/R	Time unit spends in process
Cost of Direct Labor	=(wages per unit of time x #of workers) / Flow Rate
Labor Content	sum of processing times involving labor (don't multiply by #of workers)
Labor Utilization	= R / Labor Capacity
Labor Capacity	= N (# of workers) / Labor content
Takt Time =1/ Demand Rate	Time between when flow units are demanded
Target Manpower = Labor Content/ Takt Time	= Labor Content/ Takt Time
Goal of Line Balancing	Find min cycle time


Process Flows (Lecture 1)

Little's Law: I = R	I= Inventory, R= Flow	
хΤ	Rate, T= Flow Time	
Days of Supply =	The "T" in Little's Law	
I/R = 1/Turns	(add def)	
Inventory Turns = 1/T = R/I = COGS/ I		
COGS = R, the flow rate		
Gross Margin % = (Price - Cost) / Price		

Decision trees

Maximin Decision	Find the minimums of each branch, then choose the max of the mins
Maximax Decision	Find the max of each branch, then choose the max of the maxes
Expected value of Perfect info	= (expected value of decision w/ perfect info) - (expected value of decision w/o perfect info)

Baye's Rule

Queues

Queues (cont)

Inventory in service = p/a CVa= Standard deviation inter arrival time / avg inter arrival time CVp= Standard deviation processing time/ avg processing time Time in queue increases dramatically as utilization approaches 100% Yield and Capacity of Process Yield = Flow Rate goof output/ Flow rate bad output

Yield of Process = Product of resource yields

Implied Utilization	Can be over 100% ,	
= Demand/	bottleneck has highest	
Capacity	IU	
Capacity = 1/Processing Time		
Processing Time = 1/Capacity		
Demand (in min of work) = Processing time		
x Demand		

Required input = Desired output/ Process yield

Required resource capacity = Resource's demand with required input

Required resource capacity = Resource's demand with required input

Finding capacity Find capacity of each of process step and find the bottleneck

Solving Questions

Solving Questions (cont)

Length of queue at time T = T x (Demand -Capacity)

Time to serve Qth person in queue = Q/Capacity

Time to serve customer arriving at time T = T x (Demand/Capacity-1)

Avg time to serve customers in the queue = 1/2 x T x (Demand/Capacity -1)

Variables a= inter arrival time, m= # of to know workers/kiosks, p = avg processing time

Demand = 1/a

Capacity= m x (1/p)

Utilization = P / (a x m)

m = P /(a x utilization)

Time spent in system = Time in queue + Time in processing

Inventory = Inventory in queue + Inventory in service

Inventory in queue = Time in queue/ a

What the question is asking	Approach to take
Inventory costs are what percent of purchasing costs?	Find Flow Time. Then multiply annual inventory cost percentage by flow time in years and by individual unit cost
Cost to hold inventory for a year What is the avg time	Cost of individual unit x annual holding cost percentage Find flow time

Total time to process 20 customers	Time to process 1st customer (sum of processing times) + time to process other customers (19 x Cycle
Total ordering	Time) (K x R) / Q
Total holding costs	1/2 x Qh
How many individual units should they produce in each batch	Use desired capacity to find full batch size. Then multiply batch size by ratio of individual demand/ca- pacity over total demand/capacity
If company ordered a specific number of cases at a time, what would be their holding and ordering costs	Find C(Q)
If company ordered a specific number of cases, what would be holding and ordering cost per case	Find C(Q)/ R
Quantity of cases per order	Find EOQ
How long will you wait if you are nth in line	Find the time to serve the number of people in front of you.

Avg Inventory

 $\frac{1}{2} \times Batch size \times (1 - Flow)$

Setup Times and Batching

Capacity = Number of units produced/ Time to Produce units

Utilization (with a setup time) = Flow rate x Processing Time

Sponsored by Readable.com

Measure your website readability! https://readable.com

By vicy12341 cheatography.com/vicy12341/ Not published yet. Last updated 3rd March, 2022. Page 2 of 3.

Cheatography

OIDD Cheat Sheet by vicy12341 via cheatography.com/144393/cs/30992/

 $Capacity = {Batch size \over Setup time + Batch size imes Processing time}$

EOQ and (Quantity Discounts
Inventory Variables	Q= quantity in each order, R=Flow Rate, h = inventory holding cost per unit time, K= fixed vost per order
Time betwe	een shipments = Q/R
Avg invente	ory = Q/2
Number of orders placed per unit of time = R/Q	
Capacity (in min of work/hr) = #of workers x 60	
Quantity minimizing ordering and holding costs	
	$Q^* = \sqrt{\frac{2 \times K \times R}{\hbar}}$
Batch Size	
	Butch size = Capacity * Setup time I - Capacity * Processing time
Ordering plus inventory holding cost per unit time	
	$C(\mathbf{Q}) = \frac{\mathbf{K} \times \mathbf{R}}{\mathbf{Q}} + \frac{1}{2}h \times Q$
Time in Qu	EUE Time in queue $-\binom{p}{m}_{n} \left(\frac{(lilitation)^{2m(n)}}{1-lilitation} \right)_{n} \left(\frac{Cr_{i}^{2} + cCr_{j}^{2}}{2} \right)$

\mathbf{C}

By vicy12341

cheatography.com/vicy12341/

Not published yet. Last updated 3rd March, 2022. Page 3 of 3.

Sponsored by Readable.com

Measure your website readability! https://readable.com