| Lecture 2 |  |
| :--- | :--- |
| Flow Rate | Min between demand and capacity |
| Utilization $=$ R/Capacity | fraction of time spent working |
| Cycle Time $=1 /$ Flow Rate | Time between when units exit process |
| Flow Time $=1 / R$ | Time unit spends in process |
| Cost of Direct Labor | $=$ (wages per unit of time x \#of workers) $/$ Flow Rate |
| Labor Content | sum of processing times involving labor (don't multiply by \#of workers) |
| Labor Utilization | $=$ R / Labor Capacity |
| Labor Capacity | $=\mathrm{N}$ (\# of workers) $/$ Labor content |
| Takt Time $=1 /$ Demand Rate | Time between when flow units are demanded |
| Target Manpower $=$ Labor Content/ Takt Time | $=$ Labor Content/ Takt Time |
| Goal of Line Balancing | Find min cycle time |


| Process Flows (Lecture 1) |  |
| :---: | :---: |
| $\begin{array}{ll} \text { Little's Law: I = R } & \text { I= Inventory, R= Flow } \\ \text { x T } & \text { Rate, T F Flow Time } \end{array}$ |  |
| $\begin{array}{ll} \text { Days of Supply = } & \text { The "T" in Little's Law } \\ I / R=1 / \text { Turns } & \text { (add def) } \end{array}$ |  |
| Inventory Turns = 1/T = R/I = COGS/ $/$ |  |
| COGS $=$ R, the flow rate |  |
| Gross Margin \% = (Price - Cost) / Price |  |
| Decision trees |  |
| Maximin <br> Decision | Find the minimums of each branch, then choose the max of the mins |
| Maximax <br> Decision | Find the max of each branch, then choose the max of the maxes |
| Expected value of Perfect info | = (expected value of decision $\mathrm{w} /$ perfect info) - (expected value of decision w/o perfect info) |

## Baye's Rule


$\square$

## Queues (cont)

Inventory in service = p/a
CVa= Standard deviation inter arrival time / avg inter arrival time
CVp= Standard deviation processing time/ avg processing time
Time in queue increases dramatically as utilization approaches $100 \%$

## Yield and Capacity of Process

Yield = Flow Rate goof output/ Flow rate bad output
Yield of Process $=$ Product of resource yields

| Implied Utilization | Can be over $100 \%$, |
| :--- | :--- |
| = Demand/ | bottleneck has highest |
| Capacity | IU |

Capacity $=1 /$ Processing Time
Processing Time $=1 /$ Capacity
Demand (in min of work) $=$ Processing time x Demand
Required input = Desired output/ Process yield
Required resource capacity = Resource's demand with required input
Required resource capacity = Resource's demand with required input
Finding capacity

of process | Find capacity of each |
| :--- |
| step and find the |
| bottleneck |

Solving Questions

Solving Questions (cont)

Length of queue at time $\mathrm{T}=\mathrm{T} \times$ (Demand Capacity)

## Time to serve Qth person in queue $=$

Q/Capacity
Time to serve customer arriving at time $\mathrm{T}=$ Tx (Demand/Capacity-1)
Avg time to serve customers in the queue = 1/2 $\times \mathrm{T} \times$ (Demand/Capacity -1)
Variables $a=$ inter arrival time, $m=$ \# of
to know workers/kiosks, $\mathrm{p}=\mathrm{avg}$
processing time
Demand $=1 / \mathrm{a}$
Capacity $=m \times(1 / p)$
Utilization $=P /(a \times m)$
$\mathrm{m}=\mathrm{P} /(\mathrm{a} \times$ utilization $)$
Time spent in system = Time in queue +
Time in processing
Inventory = Inventory in queue + Inventory
in service
Inventory in queue = Time in queue/a

| What the <br> question is <br> asking | Approach to take |
| :--- | :--- |
| Inventory | Find Flow Time. Then |
| costs are | multiply annual inventory |
| what | cost percentage by flow |
| percent of | time in years and by |
| purchasing | individual unit cost |
| costs? |  |$\quad$| Cost to hold |  |
| :--- | :--- |
| inventory for | Cost of individual unit x |
| a year | percentage holding cost |
| What is the <br> avg time... | Find flow time |


| Total time to process 20 customers | Time to process 1st customer (sum of processing times) + time to process other customers ( $19 \times$ Cycle Time) |
| :---: | :---: |
| Total ordering costs | ( $\mathrm{K} \times \mathrm{R}$ / / Q |
| Total holding costs | 1/2 $\times$ Qh |
| How many individual units should they produce in each batch | Use desired capacity to find full batch size. <br> Then multiply batch size by ratio of individual demand/capacity over total demand/capacity |
| If company ordered a specific number of cases at a time, what would be their holding and ordering costs | Find C(Q) |
| If company ordered a specific number of cases, what would be holding and ordering cost per case | Find $C(Q) / R$ |
| Quantity of cases per order | Find EOQ |
| How long will you wait if you are nth in line | Find the time to serve the number of people in front of you. |



| Setup Times and Batching |
| :--- |
| Capacity = Number of units produced/ Time |
| to Produce units |
| Utilization (with a setup time) = Flow rate x |
| Processing Time |

By vicy 12341
cheatography.com/vicy12341/

Not published yet.
Last updated 3rd March, 2022.
Page 2 of 3 .

Sponsored by Readable.com
Measure your website readability!
https://readable.com

OIDD Cheat Sheet
by vicy12341 via cheatography.com/144393/cs/30992/

| Capacity |  |
| :---: | :---: |
|  |  |

## EOQ and Quantity Discounts

Inventory $\mathrm{Q}=$ quantity in each order,
Variables $\mathrm{R}=$ Flow Rate, $\mathrm{h}=$ inventory holding cost per unit time, $\mathbf{K}=$ fixed vost per order
Time between shipments $=Q / R$
Avg inventory = Q/2
Number of orders placed per unit of time $=$ R/Q

Capacity (in min of work/hr) = \#of workers x
60


Batch Size

Batch sise $=\frac{\text { Capacili } \times \text { Senp time }}{1 \text {-Capacit } x \text { Procesing time }}$

Ordering plus inventory holding cost per unit time

$$
\mathrm{C}(\mathrm{Q})=\frac{\mathrm{K} \times \mathrm{R}}{\mathrm{Q}}+\frac{1}{2} h \times Q
$$

Time in Queue

$$
=
$$



## By vicy12341

cheatography.com/vicy12341/

Not published yet.
Last updated 3rd March, 2022.
Page 3 of 3 .

Sponsored by Readable.com
Measure your website readability!
https://readable.com

