OIDD Cheat Sheet

Cheatography

Lecture 2	
Flow Rate	Min between demand and capacity
Utilization = R/Capacity	fraction of time spent working
Cycle Time = 1/ Flow Rate	Time between when units exit process
Flow Time = I/R	Time unit spends in process
Cost of Direct Labor	=(wages per unit of time x #of workers) / Flow Rate
Labor Content	sum of processing times involving labor (don't multiply by #of workers)
Labor Utilization	= R / Labor Capacity
Labor Capacity	= N (# of workers) / Labor content
Takt Time =1/ Demand Rate	Time between when flow units are demanded
Target Manpower = Labor Content/ Takt Time	= Labor Content/ Takt Time
Goal of Line Balancing	Find min cycle time

Process Flows (Lecture 1)

Little's Law: I = R	I= Inventory, R= Flow	
хΤ	Rate, T= Flow Time	
Days of Supply =	The "T" in Little's Law	
I/R = 1/Turns	(add def)	
Inventory Turns = 1	/T = R/I = COGS/ I	
COGS = R, the flow rate		
Cross Margin % -	(Price Cost) / Price	

Gross Margin % = (Price - Cost) / Price

Decision trees Find the minimums of each Maximin Decision branch, then choose the max of the mins Maximax Find the max of each branch, Decision then choose the max of the maxes Expected = (expected value of decision w/ value of perfect info) - (expected value Perfect of decision w/o perfect info) info

Baye's Rule

P(A(B)	= P(ANB)	$\rho(B A) \rho(A)$
	P(B)	P(B)

Queues

Queues	(cont)
Gucuco	

Inventory in service = p/a CVa= Standard deviation inter arrival time / avg inter arrival time

CVp= Standard deviation processing time/ avg processing time

Time in queue increases dramatically as utilization approaches 100%

Yield and Capacity of Process

Yield = Flow Rate goof output/ Flow rate bad output		
Yield of Process = F yields	Product of resource	
Implied Utilization = Demand/ Capacity	Can be over 100% , bottleneck has highest IU	
Capacity = 1/Proces	ssing Time	
Processing Time = 1/Capacity		
Demand (in min of work) = Processing time x Demand		
Required input = Desired output/ Process yield		
Required resource capacity = Resource's demand with required input		
Required resource capacity = Resource's demand with required input		
Finding capacity of process	Find capacity of each step and find the bottleneck	

Solving Questions

Solving Questions (cont)

Length of queue at time T = T x (Demand -Capacity)

Time to serve Qth person in queue = Q/Capacity

Time to serve customer arriving at time T = T x (Demand/Capacity-1)

Avg time to serve customers in the queue = 1/2 x T x (Demand/Capacity -1)

Variables a= inter arrival time, m= # of to know workers/kiosks, p = avg processing time

Demand = 1/a

Capacity= m x (1/p)

Utilization = P / (a x m)

m = P /(a x utilization)

Time spent in system = Time in queue + Time in processing

Inventory = Inventory in queue + Inventory in service

Inventory in queue = Time in queue/ a

What the question is asking	Approach to take
Inventory costs are what percent of purchasing costs?	Find Flow Time. Then multiply annual inventory cost percentage by flow time in years and by individual unit cost
Cost to hold inventory for a year	Cost of individual unit x annual holding cost percentage
What is the avg time	Find flow time

Total time to process 20 customers	Time to process 1st customer (sum of processing times) + time to process other customers (19 x Cycle Time)
Total ordering costs	(K x R) / Q
Total holding costs	1/2 x Qh
How many individual units should they produce in each batch	Use desired capacity to find full batch size. Then multiply batch size by ratio of individual demand/ca- pacity over total demand/capacity
If company ordered a specific number of cases at a time, what would be their holding and ordering costs	Find C(Q)
If company ordered a specific number of cases, what would be holding and ordering cost per case	Find C(Q)/ R
Quantity of cases per order	Find EOQ
How long will you wait if you are nth in line	Find the time to serve the number of people in front of you.

Avg Inventory

Average Inventory = $\frac{1}{2} \times Batch size \times (1 - Flow rate \times Processing time)$

Setup Times and Batching

Capacity = Number of units produced/ Time to Produce units

Utilization (with a setup time) = Flow rate x Processing Time

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

By vicy12341 cheatography.com/vicy12341/ Not published yet. Last updated 3rd March, 2022. Page 2 of 3.

OIDD Cheat Sheet

Cheatography

by vicy12341 via cheatography.com/144393/cs/30992/

Capacity

Capacity = <u>Batch size</u> Setup time + Batch size × Processing time

EOQ and (Quantity Discounts
Inventory Variables	Q= quantity in each order, R=Flow Rate, h = inventory holding cost per unit time, K= fixed vost per order
Time betwe	een shipments = Q/R
Avg invente	ory = Q/2
Number of R/Q	orders placed per unit of time =
Capacity (i	n min of work/hr) = #of workers x
Quantity m costs	inimizing ordering and holding
	$Q^* = \sqrt{\frac{2 \times K \times R}{h}}$
Batch Size	
	Batch size =Capacity × Setup time 1 - Capacity × Processing time
Ordering pl	lus inventory holding cost per unit
	$C(Q) = \frac{K \times R}{Q} + \frac{1}{2}h \times Q$
Time in Qu	eue
	$Time \ in \ quere = \binom{p}{m} e \binom{f(litization^{-lipsch})}{l \cdot l \ bliczation} e^{\frac{lipsch}{2}} e^{\binom{p}{2}} e^{\binom{p}{2}} \frac{1}{2}$
	By vicy12341

cheatography.com/vicy12341/

\mathbf{C}

Not published yet. Last updated 3rd March, 2022. Page 3 of 3. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com