\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{Varda} \pdfinfo{ /Title (intro-to-neuroscience.pdf) /Creator (Cheatography) /Author (Varda) /Subject (Intro to Neuroscience Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{A3A3A3} \definecolor{LightBackground}{HTML}{F3F3F3} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Intro to Neuroscience Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{Varda} via \textcolor{DarkBackground}{\uline{cheatography.com/165279/cs/40515/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}Varda \\ \uline{cheatography.com/varda} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 11th December, 2023.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{2} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Chapter 1}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Cellular Components of the nervous system}} \newline % Row Count 1 (+ 1) Neurons \newline % Row Count 2 (+ 1) - Dendrites and axon's are wrapped with myelin \newline % Row Count 3 (+ 1) - Synapse - Communication point \newline % Row Count 4 (+ 1) {\bf{CNS}} - Myelin sheath- Oligodendrocytes \newline % Row Count 5 (+ 1) {\bf{PNS}} - Myelin Sheath - Schwann Cells \newline % Row Count 6 (+ 1) {\emph{Cajal}}- Neurons are polarized establishing directional flow reflected by molecular specializations. \newline % Row Count 9 (+ 3) {\bf{{\emph{Neurons}}}} \newline % Row Count 10 (+ 1) - Protein synthesis occurs in the soma \newline % Row Count 11 (+ 1) - Long axon with a terminal where synaptic vesicles release neurotransmitters \textless{}- presynaptic cells \newline % Row Count 14 (+ 3) -Postsynaptic cells have receptors \newline % Row Count 15 (+ 1) Divergence - Few to many \newline % Row Count 16 (+ 1) Convergence - Many to few \newline % Row Count 17 (+ 1) {\bf{{\emph{Glia Cells}}}} \newline % Row Count 18 (+ 1) CNS - Brain + Spinal Cord \newline % Row Count 19 (+ 1) - Astrocytes - blood-brain barrier + buffer ions/neurotransmitters \newline % Row Count 21 (+ 2) - Oligodendrocytes - myelinate neuronal axons \newline % Row Count 22 (+ 1) -Microglia - macrophage activity + secrete cytokines \newline % Row Count 24 (+ 2) PNS - Extension of CNS \newline % Row Count 25 (+ 1) - Schwann cells - myelinate neuronal axons + participate in recovery of function resulting from neuronal damage \newline % Row Count 28 (+ 3) {\bf{Afferent - towards the CNS Efferent- Away from the CNS}} \newline % Row Count 30 (+ 2) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Chapter 1 (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Signals can be excitatory, Inhibitory or Modulatory}} \newline % Row Count 2 (+ 2) Input-output geometry \newline % Row Count 3 (+ 1) - tap - Sensory neuron excites and inhibits motor neuron - Motor conducts action potential causing contraction - Flexor relaxes due to inhibition - Leg extends \newline % Row Count 7 (+ 4) Optogenetics - Genes introduced, monitor and control activity to light signals by chemical signals \newline % Row Count 9 (+ 2) {\bf{Organization by type of info}} - Unity of function \newline % Row Count 11 (+ 2) {\bf{Topographic Maps}} - Parallel Pathways \newline % Row Count 12 (+ 1) {\bf{Computational Map}} - Time/order of input \newline % Row Count 13 (+ 1) Lesion Studies - direction of information flow \newline % Row Count 14 (+ 1) - Transgenic reporter - specific genes \newline % Row Count 15 (+ 1) - Aintibody labeling - specific proteins \newline % Row Count 17 (+ 2) - In Situ hybridization - localizing mRNA - particular protein \newline % Row Count 19 (+ 2) Receptive Field - region in sensory space where a neuron will respond \newline % Row Count 21 (+ 2) Organization of HNS \newline % Row Count 22 (+ 1) - Visceral Motor Neurons - synapse with peripheral motor neurons in autonomic ganglion \newline % Row Count 24 (+ 2) - Sympathetic division: originate at Sympathetic trunk at thoracic and lumbar levels \newline % Row Count 26 (+ 2) - Parasympathetic division - orig @ brainstem and sacral levels \newline % Row Count 28 (+ 2) - Enteric division: Gastrointestinal tract \newline % Row Count 29 (+ 1) - Gray Matter : Cell Bodies \newline % Row Count 30 (+ 1) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Chapter 1 (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{- White Matter : Myelin-covered axon tracts BRAIN - Commissures SPINAL CORD - Columns \newline % Row Count 2 (+ 2) Genomics - analysis of the complete DNA seq of species/individual \newline % Row Count 4 (+ 2) Homozygosity Mapping - Identify multiple genes associated with disorders - Individual/family \newline % Row Count 6 (+ 2) Genome-wide association studies - Analysis in inheritance of large cohorts \newline % Row Count 8 (+ 2) Transgenic animals - introduce novel gene into stem/zygote cells \newline % Row Count 10 (+ 2) {\bf{{\emph{Knock-in/out}}}} \newline % Row Count 11 (+ 1) -Homologous recombination - Recombining DNA sequence into genome \newline % Row Count 13 (+ 2) -Conditional Mutations - preventing mRNA becoming protein \newline % Row Count 15 (+ 2) - Gene Editing - CRISPER-Cas9 - Specific mutations into gene% Row Count 17 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Chapter 2}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Electrical Signals of a Neve Cells \newline % Row Count 1 (+ 1) Concentration gradients from charged protein molecules and ions create a measurable electrical gradient. \newline % Row Count 4 (+ 3) electrical gradient - potential difference across the cell membrane. \newline % Row Count 6 (+ 2) Resting membrane - constant voltage at cell rest (-40\_-90) \newline % Row Count 8 (+ 2) Synaptic potential - Change in potential one neuron stimulates another via synapses using a neurotransmitter \newline % Row Count 11 (+ 3) Action Potential - Nerve impulse/spike travels along an axon \newline % Row Count 13 (+ 2) {\bf{Passive electrical response}} - no response to the membrane potential \newline % Row Count 15 (+ 2) {\bf{Hyperpolarization}} - stimulus casing the membrane to go negative than the resting potential \newline % Row Count 17 (+ 2) {\bf{Active electrical response}} - stimulus causing the membrane potential to increase past threshold - depolarizing action potential \newline % Row Count 20 (+ 3) Stimilus intensity - Action potential frequency \newline % Row Count 21 (+ 1) Requirements for Generating Cellular electrical signals \newline % Row Count 23 (+ 2) 1. Concentration gradient \newline % Row Count 24 (+ 1) 2. Membrane semipermeability through ion channels \newline % Row Count 26 (+ 2) {\bf{Nerst equation}} linear relationship between transmembrane concentration gradient + membrane potential \newline % Row Count 29 (+ 3) - predicts the electrical potential at electrochemical equilibrium for 1 ion. \newline % Row Count 31 (+ 2) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Chapter 2 (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Resting membrane}} is more permeable to K+ than any other ion \newline % Row Count 2 (+ 2) During depolarization - membrane potential becomes more positive \newline % Row Count 4 (+ 2) During repolarization - membrane potential becomes more negative \newline % Row Count 6 (+ 2) Rising phase, overshoot phase, falling phase, undershoot phase% Row Count 8 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Chapter 3}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Chapter 3 - Voltage-Dependent Membrane Permeability \newline % Row Count 2 (+ 2) At rest, neuronal membranes are more permeable to K+, than to Na+, the resting membrane potential is negative and approaches the equilibrium potential for K+. \newline % Row Count 6 (+ 4) During an AP, the membrane becomes permeable to Na+, the MP becomes positive and approaches the equilibrium potential for Na+ \newline % Row Count 9 (+ 3) MP and Permeability change affect each other \newline % Row Count 10 (+ 1) axon membrane permeability is voltage-dependent \newline % Row Count 11 (+ 1) By examining how the inward and outward currents changed, it is possible to measure ion permeability as the membrane potential varied.% Row Count 14 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Chapter 4}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Chapter 4 - Ion Channels and Transporters \newline % Row Count 1 (+ 1) Measurement of currents flowing through single ion channels \newline % Row Count 3 (+ 2) Ion channels and the currents flowing through them should have several properties : \newline % Row Count 5 (+ 2) - capable of allowing ions to move across the membranes at high rates \newline % Row Count 7 (+ 2) - make use of the electrochemical gradients of various ions \newline % Row Count 9 (+ 2) - channels selectivity \newline % Row Count 10 (+ 1) - sense changes in membrane potential \newline % Row Count 11 (+ 1) The Patch Clamp Method \newline % Row Count 12 (+ 1) Four configurations in patch clamp measurements of ion currents \newline % Row Count 14 (+ 2) Cell-attached recording. \newline % Row Count 15 (+ 1) Whole-cell recording. \newline % Row Count 16 (+ 1) Inside-out recording. \newline % Row Count 17 (+ 1) Outside-out recording \newline % Row Count 18 (+ 1) Patch clamp measurements of ion currents can separate currents through individual channels (microscopic currents) or many channels (macroscopic currents) representing relatively large surfaces of membrane. \newline % Row Count 23 (+ 5) Microscopic and macroscopic currents have also been shown for single K+ channels \newline % Row Count 25 (+ 2) Channels for both Na+ and K+ are voltage-gated \newline % Row Count 26 (+ 1) - They open during depolarization, but at different times \newline % Row Count 28 (+ 2) - They close during a hyperpolarization \newline % Row Count 29 (+ 1) - The gates of both channels are closed when the membrane potential is hyperpolarized \newline % Row Count 31 (+ 2) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Chapter 4 (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Tetrodotoxin, saxitoxin, μ-Conotoxin – block Na+ channels; inhibit depolarization. \newline % Row Count 2 (+ 2) α-Toxins – prolong the action potentials, scrambling information flow. \newline % Row Count 4 (+ 2) β-Toxins – Cause Na+ channels to open at lower-than-normal potentials, causing uncontrolled action potential firing. \newline % Row Count 7 (+ 3) Batrachotoxin – removes inactivation and shifts activation of Na+ channels. \newline % Row Count 9 (+ 2) Dendrotoxin, apamin, charybdotoxin block K+ channels \newline % Row Count 11 (+ 2) Voltage-gated ion channels: \newline % Row Count 12 (+ 1) SCN - Na+ channel genes. \newline % Row Count 13 (+ 1) KCN – K+ channel genes. \newline % Row Count 14 (+ 1) CACNA – Ca2+ channel genes. \newline % Row Count 15 (+ 1) CLCN – Cl- channel genes \newline % Row Count 16 (+ 1) Ligand-gated ion channels genes: \newline % Row Count 17 (+ 1) Neurotransmitter-gated. \newline % Row Count 18 (+ 1) Cyclic nucleotide-gated. \newline % Row Count 19 (+ 1) Transient receptor potential family of genes. \newline % Row Count 20 (+ 1) Thermosensitive channel. \newline % Row Count 21 (+ 1) Mechanosensitive channel.% Row Count 22 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Chapter 5}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Chapter 5 - Synaptic Transmission \newline % Row Count 1 (+ 1) - Chemical synapses. \newline % Row Count 2 (+ 1) Use neurotransmitters and their receptors. \newline % Row Count 3 (+ 1) Ca2+-dependent neurotransmitter release \newline % Row Count 4 (+ 1) Unidirectional. \newline % Row Count 5 (+ 1) Slower. \newline % Row Count 6 (+ 1) - Electrical synapses \newline % Row Count 7 (+ 1) Uses gap junctions as ion channels. \newline % Row Count 8 (+ 1) Bidirectional. \newline % Row Count 9 (+ 1) Faster. \newline % Row Count 10 (+ 1) A presynaptic terminal button (top) forms a synapse with a postsynaptic dendrite (bottom). \newline % Row Count 12 (+ 2) Generation of action potentials in one neuron results in the synchronized firing of action potentials in the adjacent neuron \newline % Row Count 15 (+ 3) Hippocampal interneurons – one of the few places in the CNS that use electrical synapses \newline % Row Count 17 (+ 2) Entails electrical (action potential in presynaptic neuron), chemical (neurotransmitter diffusing across the synaptic cleft), and then resumption of electrical (action potential in postsynaptic neuron) transmission \newline % Row Count 22 (+ 5) Ultimately, action potential in the postsynaptic neuron is generated by the opening of ion channels, thereby changing the membrane potential. \newline % Row Count 25 (+ 3) - Achieved through either ionotropic or metabotropic receptors \newline % Row Count 27 (+ 2) Presynaptic structures: \newline % Row Count 28 (+ 1) filamentous structures help guide vesicles to active zone. \newline % Row Count 30 (+ 2) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Chapter 5 (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Several pools of vesicles exist: only those at the active zone are ready for exocytosis. \newline % Row Count 2 (+ 2) Postsynaptic structures: \newline % Row Count 3 (+ 1) Postsynaptic Density (PSD) \newline % Row Count 4 (+ 1) helps anchor postsynaptic receptors in postsynaptic membrane: prevents lateral diffusion of receptors. \newline % Row Count 7 (+ 3) Contains many proteins involved in plasticity-dependent processes, such as learning, memory, health, and disease \newline % Row Count 10 (+ 3) Quantal* release of neurotransmitters. \newline % Row Count 11 (+ 1) Synaptic transmission at the neuromuscular junction (nmj) results in end-plate potentials (EPP) in the muscle cell. \newline % Row Count 14 (+ 3) Acetylcholine is released in discrete packets, each leads to a miniature EPP (MEPP). \newline % Row Count 16 (+ 2) Spontaneous firings in the muscle cell manifested in MEPPs (Fatt and Katz, 1952).A quantum (plural: quanta) is the smallest discrete unit of a phenomenon \newline % Row Count 20 (+ 4) Ligand-gated ion channels. \newline % Row Count 21 (+ 1) Receptor itself is also the ion channel. \newline % Row Count 22 (+ 1) Also called ionotropic receptors. \newline % Row Count 23 (+ 1) Fast: postsynaptic potentials responses range: 1-2 msec after an action potential reached the presynaptic terminal. \newline % Row Count 26 (+ 3) Metabotropic receptors. \newline % Row Count 27 (+ 1) G-protein-coupled receptors: G-protein complex activated by ligand binding to the receptor. \newline % Row Count 29 (+ 2) Slow: postsynaptic potentials responses range: hundreds of msec to 1-2 minutes. \newline % Row Count 31 (+ 2) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Chapter 5 (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Cascade of phosphorylation events and second-messenger production \newline % Row Count 2 (+ 2) Release of transmitters from synaptic vesicles. \newline % Row Count 3 (+ 1) Individual quanta of neurotransmitter released are caused by the fusion of the vesicle membrane with the plasma membrane. \newline % Row Count 6 (+ 3) Number of quanta released positively correlated with the number of vesicles fusing. \newline % Row Count 8 (+ 2) The average synaptic vesicle has a diameter of \textasciitilde{} 50 nm, corresponding to about 100 mM acetylcholine \newline % Row Count 10 (+ 2) Local recycling of synaptic vesicles. \newline % Row Count 11 (+ 1) Following neurotransmitter exocytosis, fusion of synaptic vesicles with the plasma membrane is temporary. \newline % Row Count 14 (+ 3) Retrieved vesicular membrane passes through several intracellular compartments, such as endosomes. \newline % Row Count 16 (+ 2) Vesicles are loaded with neurotransmitter in an ATP-dependent/proton antiporter process. \newline % Row Count 18 (+ 2) Vesicles are stored in the presynaptic reserve pool until needed again to participate in neurotransmitter release. \newline % Row Count 21 (+ 3) SNARE Complex at Work to Exocytose Neurotransmitter. \newline % Row Count 23 (+ 2) Key Proteins: \newline % Row Count 24 (+ 1) Vesicular (V-SNARE) proteins: synaptobrevin, synaptotagmin. \newline % Row Count 26 (+ 2) Target (T-SNARE) proteins: syntaxin, SNAP-25. \newline % Row Count 27 (+ 1) Synaptobrevin coils around syntaxin and SNAP-25. \newline % Row Count 28 (+ 1) Synaptotagmin binds Ca2+  conformational change to pull vesicle closer to plasma membrane, which protrudes towards the former, bringing the 2 membranes closer together. \newline % Row Count 32 (+ 4) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Chapter 5 (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Fusion of the 2 membranes leads to exocytosis of neurotransmitter \newline % Row Count 2 (+ 2) Myasthenic Syndromes – abnormal transmission at neuromuscular synapses. \newline % Row Count 4 (+ 2) {\bf{Concepts 5.3, 5.4, 5.6, and 5.7 will not be covered in this course.}}% Row Count 6 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Chapter 6}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Chapter 6 - Neurotransmitters and Their Receptors \newline % Row Count 2 (+ 2) Neurotransmitters : \newline % Row Count 3 (+ 1) - In the presynaptic neuron \newline % Row Count 4 (+ 1) - Must be released during synaptic activity \newline % Row Count 5 (+ 1) - binds to receptors on the post synaptic neuron \newline % Row Count 6 (+ 1) Types - Neuropeptides or peptide neurotransmitters, Small molecule neurotransmitters - acetylcholine, amino acids, purines, and biogenic amines.% Row Count 9 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}