Cheatography

Unit 4 AP Biology (partial) Cheat Sheet by VanessaG via cheatography.com/32617/cs/10066/

Reduction Division				
Sexual Rep GOOD	Sexual Reproduction = Genetic Diversity = GOOD			
Pierre and J	oseph			
Reduction	Division			
Sexual Reprodu ction	= Genetic I	Diversity =	GOOD	
Pierre and Joseph	gametes (contained somatic (r contained cells)	egg & spei 2 chromos nonreprodu 4 chromos	rm) each omes; uctive) omes (most	
Fertilizati on (Van Beneden)	= syngamy	r = fusion c	of gametes	
Reductio n Division	producing cells with half the number of chromosomes = meiosis			
Sexual Life Cycle	meiosis + fertilizati on = sexual reproduc tiondiploi d cells	diploid cells=2 sets of chromo somes	haploid cells= one set of chromoso mes (23 through eggs & 23 through sperm ¹)	
Somatic Tissues	post fertilizati on= zygote divides by mitosis	plant cells cells divid mitosis	=haploid e by	

Reduction Division (cont)			
Germ Line Tissues	In animals= cells set aside to undergo meiosis & produce gametes	gamete - prroduc ing	
Synapsis ²	aligning of homologous chromosomes(homologues)		
Homologous Recombinati on ²	Crossing over= small segment excahnages		
¹ This does not mean 1/2 mom, 1/2 dad ² Special features of Meiosis (PEQ)			
Unique Features of Meiosis (PEQ)			

Synapsis	aligning of homologous chromosomes(homologues)		
Homologous Recombinati on	genetic exchange between homologous chromosom es	Crossing over= small segment excahnages	=Genetic diversity
Reduction Division	Chromosomes beteween the	s do not replica 2 nuclear divisi	te ions

Prophase 1	
Leptotene	Chromosomes condensed tightly
Zygotene	synaptomal complex
Pachytene	
Diplotene	
Diakinesis	

sexlinked traits (sex linkage)	trait determined by a gene on the x- chromoso me	whatever is on the x shows since there is no combative gene or competition on y	
some traits tend to stay within races	EX: sickle cel americans	I anemia= African	
chromos omal theory of inheritanc e	similar chomosomes paired with one another during meiosis		
problem with chromos omal theory	why does number of characters that assort often greaetly exceed the number of chromosomes pairs the organism posesses		
Genetic Re	ecombination		
crossing	exchange of	form of	

maps the flow of traits;s doinance and recessiveness

Inheritance

pedigree

	loooninnation	
crossing over	exchange of chromosome arms	form of recobination
Genetic Map	results of crosses that can be put together to measure distance between genes in terms of frequesncy recombination	
A map unit	centimorgan	

By VanessaG

cheatography.com/vanessag/

Not published yet. Last updated 7th November, 2017. Page 1 of 3. Sponsored by **Readability-Score.com** Measure your website readability! https://readability-score.com

Cheatography

Unit 4 AP Biology (partial) Cheat Sheet by VanessaG via cheatography.com/32617/cs/10066/

Genetic Recombination (cont)			
3 point cross	cross involving genes	g 3 linked	
Human genom Project	he sequence the human genom	entire 1e	
Early Ideas of Heredity			
Classical Assumption 1: Constancy of Species	heredity occurss w species	vithin	
Classical traits are transmitted directly Assumption 2: Direct Transmissi on of Traits			
Koelreuter	carried out hybridization of plant species		
Classical Assumption s Fail	traits can be 'masked' and reappear in one generation (contradicts theory of direct transmission)	traits- segregati on of alternativ e forms of character	
TA Knight and Peas	did not quantify or results	count their	
Early geneticists demonstrated that some forms of an inherited character (1) can disappear in one generation only to appear unchanged in future generations; (2) segregate among the offspring of a cross; and (3) are more likely to be represented than their alternatives			

Mendel and the Pea			
Why Peas?	large variety of pea	large # of true breeding varieties	sexual organs enclosed within flower
LUCKY	Pea plants o each trait	only have 2 g	jenes for
Mendel	Father of Ge	enetics	
F1 generatio	n (1st filial)		
F2 generation (2nd filial)	hidden in F1 F2	may have r	eappeared in
Punnet Squares	predicts offspring possibilitie s	capital letters- dominant	lowercase letters- recessive
Mendel- Model of heredity	No blending	effect	
Law of Segre	egation(Mende	el's 1st Law	of Heredity)
Mendel's second law of heredity: Independen t assortment	dihybrids= individuals eheterozyg ous for both genes	genes located on different chromos omes assort independ ently independ ently during meiosis	gened ilocated on different chromosmes assort independently
continuous variation	greater # of genes that influence	the more co expected d versions of character	ontinuous the istribution of trait

Mendel and the Pea (cont)			
pleiotropic effects	individual allele will have more than one effect on the phenotype	on gene effects many traits in marked contrast to polygemy(many genes effect one trait)	
Lack of complete dominance (codominc nce)	ability to see heterozygo us zygote	EX: red dominant over white but when together as heterozygous the recessive trait is not allowing it to be fully red (red+white=pink)	

Blood Groups and Rh Factors (PEQ)			
ABO blood groups	Landsteiner	blood groups	
Туре А	add only galactosa mine	Either I ^A I ^A homozygotes o heterozygotes	or I ^A i
Туре В	add only galactose	Either I ^B I ^B hon or I ^B I ^b heterozy	nozygous ygous
Туре АВ	add both sugars (galactosa mine and galactose)	A Β heterozygous	Universal recipient
Туре О	add neither sugar	are ii homozygous	Universal donor

By VanessaG cheatography.com/vanessag/ Not published yet. Last updated 7th November, 2017. Page 2 of 3.

character

Sponsored by **Readability-Score.com** Measure your website readability! https://readability-score.com

Cheatography

Unit 4 AP Biology (partial) Cheat Sheet by VanessaG via cheatography.com/32617/cs/10066/

Blood Gro	oups and R	h Factors (PEQ) (c	cont)
incorrect transfusi on	agglutinate	e=cause cells to clu	mp
Rh Blood group antigens	named after rhesus monkies	Rh-positive = Rh cell surface marker	Rh-negative = lack the Rh cell surface marker
Rh negative	detect Rh surface antigens as	Rh negative mothe child= build antibo around could kill b fetalis)	er births Rh positive dies which secon time aby (erythroblastosis

Epistasis			
Epistasis	one gene can another gene	interfere wit	h the expression of
Eample Lab REtrievers	Gene: EE or Ee = dark pigmmentati on ee=no pigmentation	second gene: E_B_ = black fur E_bb=	eebb = brown bigment on brown nose of yellow lab eeB_ = black pigment on the nose of yellow labs

By VanessaG

cheatography.com/vanessag/

Not published yet. Last updated 7th November, 2017. Page 3 of 3. Sponsored by **Readability-Score.com** Measure your website readability! https://readability-score.com