\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{VanessaG} \pdfinfo{ /Title (genchem-i-chem-121-mega-review.pdf) /Creator (Cheatography) /Author (VanessaG) /Subject (GenChem I (CHEM 121) Mega Review Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{FF4E03} \definecolor{LightBackground}{HTML}{FFF3EF} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{GenChem I (CHEM 121) Mega Review Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{VanessaG} via \textcolor{DarkBackground}{\uline{cheatography.com/32617/cs/13440/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}VanessaG \\ \uline{cheatography.com/vanessag} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 7th December, 2017.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{2} \begin{tabularx}{8.4cm}{x{1.8 cm} x{1.8 cm} x{1.8 cm} x{1.8 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{8.4cm}}{\bf\textcolor{white}{UNIT 1 -{}- Concepts!}} \tn % Row 0 \SetRowColor{LightBackground} Proving atoms exist & integer ratios (= represent units of mass= atoms) & & \tn % Row Count 5 (+ 5) % Row 1 \SetRowColor{white} Law of \seqsplit{conservation} of mass & atoms/are not created nor destroyed only \seqsplit{rearranged} & & \tn % Row Count 11 (+ 6) % Row 2 \SetRowColor{LightBackground} Atomic Molecular Theory & All matter is made up of atoms & Elements can't be \seqsplit{decomposed} into simpler \seqsplit{substances} , composed of identical atoms, all elements are defined = elements are composed of atoms & Compounds are chemical \seqsplit{substances} of elements \tn % Row Count 26 (+ 15) % Row 3 \SetRowColor{white} & \#s and masses of atoms are conserved in a chemical RXN & Compounds are composed of molecules & Atoms of the same element are identical \seqsplit{(=identical} mass) \tn % Row Count 32 (+ 6) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{1.8 cm} x{1.8 cm} x{1.8 cm} x{1.8 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{8.4cm}}{\bf\textcolor{white}{UNIT 1 -{}- Concepts! (cont)}} \tn % Row 4 \SetRowColor{LightBackground} All atoms of a single element have the same \seqsplit{characteristic} mass. & Each compound consists of identical molecules, which are small, identical particles formed of atoms combined in simple whole number ratios. & The number and masses of these atoms do not change during a chemical \seqsplit{transformation}. Each element is composed of very small, identical particles called atoms. & Each small atom is \seqsplit{surrounded} by molecules, which allow bonds to form between \seqsplit{neighboring} atoms. \tn % Row Count 17 (+ 17) % Row 5 \SetRowColor{white} \mymulticolumn{4}{x{8.4cm}}{} \tn % Row Count 17 (+ 0) % Row 6 \SetRowColor{LightBackground} Law of {\bf{definite}} \seqsplit{Proportions} (aka LAw of Constant \seqsplit{Compositions)} & elements combine in definite \seqsplit{proportions} {\emph{by mass}} to make a certain compound & compound composed of {\emph{fixed ratio}} of elements by {\bf{mass}} & {\emph{NO INTEGERS}} \tn % Row Count 25 (+ 8) % Row 7 \SetRowColor{white} & Same compund {\bf{{\emph{do not}}}} compare {\emph{different}} compounds & & \tn % Row Count 31 (+ 6) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{1.8 cm} x{1.8 cm} x{1.8 cm} x{1.8 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{8.4cm}}{\bf\textcolor{white}{UNIT 1 -{}- Concepts! (cont)}} \tn % Row 8 \SetRowColor{LightBackground} Law of {\bf{Multiple}} \seqsplit{Proportions} & compare multiple compounds made of the {\bf{{\emph{same}}}} elements if we fix the mass of one element, the other elements' masses across those compounds will be related in a simple integer ratio & must include examples where a specific \seqsplit{element/atom} bonds to the same element with different simple integer ratios & {\emph{INTEGERS}} \tn % Row Count 19 (+ 19) % Row 9 \SetRowColor{white} Law of Combining {\bf{Volumes}} & At fixed temp and pressure gases combine in simple integer ratios by volume & \seqsplit{Avogadro's} Law= At a fixed Temp and Presure {\emph{equal volumes}} of gases contain {\emph{equal \#s of particles}} & \tn % Row Count 29 (+ 10) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{4}{x{8.4cm}}{Diatomic particle : H2 O2 N2 F2 Cl2 Br2 I2} \tn % Row Count 30 (+ 1) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{1.8 cm} x{1.8 cm} x{1.8 cm} x{1.8 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{8.4cm}}{\bf\textcolor{white}{UNIT 1 -{}- Concepts! (cont)}} \tn % Row 11 \SetRowColor{LightBackground} \mymulticolumn{4}{x{8.4cm}}{} \tn % Row Count 0 (+ 0) % Row 12 \SetRowColor{white} \seqsplit{Rutherfords's} gold foil \seqsplit{experiment} & alpha particles shot through a thin gold foil sheet \{\{nl\}\} & & \tn % Row Count 6 (+ 6) % Row 13 \SetRowColor{LightBackground} & most went straight through = atoms are mostly made of empty space & some slightly \seqsplit{deflected=} \seqsplit{positively} charged nucleus & very few bounced back= \tn % Row Count 13 (+ 7) % Row 14 \SetRowColor{white} Mosely's Xray frequency data & sqrt of frequency is \seqsplit{prportional} to atmoic number & = atomic number measures \# protons since & \tn % Row Count 18 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}----} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{1.8 cm} x{1.944 cm} x{2.736 cm} p{0.72 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{8.4cm}}{\bf\textcolor{white}{Unit 1 -{}- Concepts!!}} \tn % Row 0 \SetRowColor{LightBackground} Emperical Formula & simplify ratios?? & P4O10=P2O5 & \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} Molecular Formula & as is no \seqsplit{simplification} & & \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \seqsplit{Determining} {\bf{moles}} & M=n/V & where M = Molarity \{\{nl\}\} n = moles (of solute) \{\{nl\}\} V = volume in liters (in solution) & \tn % Row Count 11 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}----} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{1.8 cm} x{1.8 cm} x{1.8 cm} x{1.8 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{8.4cm}}{\bf\textcolor{white}{Unit 2 -{}- Concepts!}} \tn % Row 0 \SetRowColor{LightBackground} \seqsplit{Rutherfords's} gold foil \seqsplit{experiment} \{\{nl\}\} alpha particles shot through a thin gold foil sheet & most alpha particels went straight through = atoms are mostly made of empty space & some slightly \seqsplit{deflected=} \seqsplit{positively} charged nucleus & very few bounced \seqsplit{back=nucleus} is much more massice than alpha particle and really small in position \tn % Row Count 10 (+ 10) % Row 1 \SetRowColor{white} \mymulticolumn{4}{x{8.4cm}}{nuclei are {\bf{tiny}} {\bf{positively}} charged {\bf{small}} and {\bf{massive}}} \tn % Row Count 12 (+ 2) % Row 2 \SetRowColor{LightBackground} Mosely's Xray frequency data & sqrt of frequency is \seqsplit{prportional} to atmoic number = atomic number measures \# protons since & integer units - counting something = protons \{\{nl\}\} \seqsplit{courelated} mass & \tn % Row Count 22 (+ 10) % Row 3 \SetRowColor{white} \seqsplit{Ionization} Energy & minimum amount of energy required to remove an electron \{\{IE felt relative to specific electron\}\} & {\bf{COULOMBS LAW}} \{\{nl\}\} V(r)=(q1 * q2)/r & \tn % Row Count 32 (+ 10) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{1.8 cm} x{1.8 cm} x{1.8 cm} x{1.8 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{8.4cm}}{\bf\textcolor{white}{Unit 2 -{}- Concepts! (cont)}} \tn % Row 4 \SetRowColor{LightBackground} & & V(r) is potential energy \{\{nl\}\} negative because opposite charges attract \{\{nl\}\} Positive when salike chgs repel & \tn % Row Count 12 (+ 12) % Row 5 \SetRowColor{white} & Periodic trend: & left to right -\textgreater{} \{\{nl\}\} charges increase PE & \{\{nl\}\} top to bottom: radius increases lowering PE \{\{nl\}\} \seqsplit{decreasing} IE \tn % Row Count 20 (+ 8) \hhline{>{\arrayrulecolor{DarkBackground}}----} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Ionization Energy Graph}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/vanessag_1512596646_ionization energy graph - -- open stax.PNG}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{1.584 cm} x{2.448 cm} x{2.448 cm} p{0.72 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{8.4cm}}{\bf\textcolor{white}{Unit 2 -{}- Concepts!}} \tn % Row 0 \SetRowColor{LightBackground} \seqsplit{Ionization} Energy (con't) & electron electron repulsion decreases ionization energy of electron & & \tn % Row Count 6 (+ 6) % Row 1 \SetRowColor{white} \seqsplit{Successive} IE & large drop indicates new shell e\textasciicircum{}-\textasciicircum{} must be removed from & & \tn % Row Count 11 (+ 5) % Row 2 \SetRowColor{LightBackground} \seqsplit{Photoelectric} effect & E=hv \{\{nl\}\} where v is frequency and h is Planck's constant & c=lambda* frequency \{\{nl\}\} lambda is frequency & E = \seqsplit{(hc)/λ} \tn % Row Count 16 (+ 5) % Row 3 \SetRowColor{white} & Planck's constant (h)= \{\{nl\}\} speed of light (c)= \{\{nl\}\} & & \tn % Row Count 21 (+ 5) % Row 4 \SetRowColor{LightBackground} & Rydberg's equation : \{\{nl\}\} Rydberg's constant: 1.097x10\textasciicircum{}-7\textasciicircum{} \{\{nl\}\} & & \tn % Row Count 27 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}----} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Photoelectric effect graphs}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/vanessag_1512597688_photoelectric effect.PNG}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{1.8 cm} x{1.8 cm} x{1.8 cm} x{1.8 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{8.4cm}}{\bf\textcolor{white}{graph relationships}} \tn % Row 0 \SetRowColor{LightBackground} More intense light above \seqsplit{threshold frequency} produces more electrons, greater current & More \seqsplit{intense light above} threshold frequency does not \seqsplit{produce electrons with greater} kinetic energy & When intensity is \seqsplit{fixed:presence} of threshold frequency implies \seqsplit{relationship} between frequency and energy – if light is above frequency threshold, the current remains fixed & Kinetic energy of electrons increases when frequency is increased – simple linear \seqsplit{relationship} \tn % Row Count 18 (+ 18) % Row 1 \SetRowColor{white} § Summary of \seqsplit{experimental} results: light which has \seqsplit{sufficiently} high \seqsplit{frequency will} eject electrons whether the \seqsplit{intensity is} low or high– & {\bf{increasing intensity gives more electrons }}but not more energetic \seqsplit{electrons–} & {\bf{increasing frequency gives more energetic electrons}} but not more of them & \tn % Row Count 32 (+ 14) \hhline{>{\arrayrulecolor{DarkBackground}}----} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{1.8 cm} x{1.656 cm} x{1.872 cm} x{1.872 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{8.4cm}}{\bf\textcolor{white}{Unit 2 -{}- Concepts!}} \tn % Row 0 \SetRowColor{LightBackground} frequency of light = color of light and amount of energy carried & \seqsplit{intensity} of light = number of e\textasciicircum{}-\textasciicircum{} & KE of electron = increases as frequency increases and {\emph{not}} affected by intensity & current = affected by intensity (increase current there is an increase \seqsplit{intensity)} \{\{nl\}\} \seqsplit{unaffected} by chnage in frequency \tn % Row Count 13 (+ 13) \hhline{>{\arrayrulecolor{DarkBackground}}----} \SetRowColor{LightBackground} \mymulticolumn{4}{x{8.4cm}}{must reach {\bf{threshold frequency}} of no electrons will be emitted} \tn \hhline{>{\arrayrulecolor{DarkBackground}}----} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{1.224 cm} x{1.944 cm} x{2.016 cm} x{2.016 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{8.4cm}}{\bf\textcolor{white}{Unit 2 -{}- Concepts!}} \tn % Row 0 \SetRowColor{LightBackground} Photo \seqsplit{emmision} & electrons jump down energy levels emmit light \{\{nl\}\} light absorbed when electrons jump up (get excited) & specific \seqsplit{frequencies} of light emitted because between specific energy levels and energy is quantized {\bf{{\emph{}}}}{\emph{*}} & \tn % Row Count 11 (+ 11) % Row 1 \SetRowColor{white} \seqsplit{quantum} \seqsplit{numbers} & n= size \{\{nl\}\} {\bf{1}}s, {\bf{2}}p {\bf{3}}d & l= shape \{\{nl\}\} 1{\bf{s}}, 2{\bf{p}}, 3{\bf{d}} \{\{nl\}\} 0 to n-1 & m(l) = \{\{noshy\}\}orientation \{\{nl\}\} (ex: 2p-x, 2p-y, 3d-xy) \{\{nl\}\} m(s) = spin + 1/2 -1/2 \{\{nl\}\} Range: -l to +l \tn % Row Count 22 (+ 11) % Row 2 \SetRowColor{LightBackground} \seqsplit{Rydberg} \seqsplit{equation} & n=shell n1= 1st energy shell n2= second enrgy shell mn & use to calculate Energy emitted when e\textasciicircum{}-\textasciicircum{} moves between shells & \tn % Row Count 28 (+ 6) % Row 3 \SetRowColor{white} & (if E(light) fixed) \{\{nl\}\} \seqsplit{E(light)=hv} = IE(e\textasciicircum{}-\textasciicircum{})+IE(e\textasciicircum{}-\textasciicircum{}) & & \tn % Row Count 34 (+ 6) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{1.224 cm} x{1.944 cm} x{2.016 cm} x{2.016 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{8.4cm}}{\bf\textcolor{white}{Unit 2 -{}- Concepts! (cont)}} \tn % Row 4 \SetRowColor{LightBackground} {\bf{Visisble}} light range & \textasciitilde{}400-750 ish & \seqsplit{Ultraviolet} - lower energy less than \textasciitilde{} 375nm & Infrared - higher \seqsplit{frequencies} past \textasciitilde{}800 \tn % Row Count 4 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}----} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Rydberg Equation}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/vanessag_1512599720_Rydberg equation.PNG}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{(1.097x10\textasciicircum{}7\textasciicircum{})m\textasciicircum{}-1\textasciicircum{} = Rydberg's constant} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.376 cm} x{3.384 cm} p{0.72 cm} p{0.72 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{8.4cm}}{\bf\textcolor{white}{Unit 2 -{}- Concepts!}} \tn % Row 0 \SetRowColor{LightBackground} LEWIS DOT STRUCTURES & A: Available (valence electrons (number of atoms)) \{\{nl\}\} N: Needed (8(nuber of element)+ 2(number of element) )\{\{nl\}\} B: S/2 \{\{nl\}\} S: N-A \{\{nl\}\} U: \{\{nl\}\} & & \tn % Row Count 9 (+ 9) % Row 1 \SetRowColor{white} & 8 - octet if follow octet rule \{\{nl\}\} 2 for duet if follow duet rule & & \tn % Row Count 13 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}----} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{1.656 cm} x{1.8 cm} x{1.872 cm} x{1.872 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{8.4cm}}{\bf\textcolor{white}{Calculations}} \tn % Row 0 \SetRowColor{LightBackground} Core Charge & \# protons (atomic number) - \# inner shell electrons & & \tn % Row Count 6 (+ 6) % Row 1 \SetRowColor{white} & CAN calculate for e\textasciicircum{}-\textasciicircum{} added and use to figure which has a greater electron affinity & & \tn % Row Count 15 (+ 9) % Row 2 \SetRowColor{LightBackground} Formal Charge & valence electrons - bonds- lone electrons ({\emph{not lone pairs}}) & & \tn % Row Count 21 (+ 6) % Row 3 \SetRowColor{white} Finding Limiting reagent & take moles of substance A and find how many moles of B gotten & take moles of substance B and find moles of substance A needed & compare moles of each substance \tn % Row Count 28 (+ 7) % Row 4 \SetRowColor{LightBackground} & moles A/1 * moles B/moles A (in \seqsplit{equation)=} moles B needed & moles B/1 * moles A/moles B (in \seqsplit{equation)=} moles A needed & moles A : moles B \seqsplit{(calcuated)} \{\{nl\}\} mol A: mole B in equation \tn % Row Count 35 (+ 7) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{1.656 cm} x{1.8 cm} x{1.872 cm} x{1.872 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{8.4cm}}{\bf\textcolor{white}{Calculations (cont)}} \tn % Row 5 \SetRowColor{LightBackground} Finding \seqsplit{Emperical} formula & find moles of each substance & find \seqsplit{corresponding} element's moles based off of & \tn % Row Count 5 (+ 5) % Row 6 \SetRowColor{white} \seqsplit{emperical} formulas in \seqsplit{combustion} & * calculate g of C and H and subtract from original \seqsplit{compound's} mass which gives O's mass & then calculate moles of O & compare ratio of C:H:O \{\{nl\}\} and this gives empirical sub numbers \tn % Row Count 14 (+ 9) % Row 7 \SetRowColor{LightBackground} Finding \seqsplit{molecular} formula & after \seqsplit{calculating} Emperical, given molecular weight divide by that of Emperical & multiply ratios by this for sub numbers & \tn % Row Count 22 (+ 8) % Row 8 \SetRowColor{white} Bond Order & $\frac{1}{2}$ (\# electrons \seqsplit{bonding-\#electrons} \seqsplit{antibonding)} & & \tn % Row Count 27 (+ 5) % Row 9 \SetRowColor{LightBackground} Proving Law of Multiple \seqsplit{proportions} & fix one element and & & \tn % Row Count 31 (+ 4) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{1.656 cm} x{1.8 cm} x{1.872 cm} x{1.872 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{8.4cm}}{\bf\textcolor{white}{Calculations (cont)}} \tn % Row 10 \SetRowColor{LightBackground} \mymulticolumn{4}{x{8.4cm}}{OXIDATION RULES} \tn % Row Count 1 (+ 1) % Row 11 \SetRowColor{white} Molarity & =mol/L & & \tn % Row Count 2 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}----} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Oxidation Rules}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/vanessag_1512584836_Oxidation rules -- Open stax.PNG}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Crystalline Structures}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/vanessag_1512585250_Crystalline solids -- open stax.PNG}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{1.512 cm} x{2.088 cm} x{2.88 cm} p{0.72 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{8.4cm}}{\bf\textcolor{white}{Bonds \textasciitilde{} metallic ionic covalent}} \tn % Row 0 \SetRowColor{LightBackground} \seqsplit{metallic} bonding & between two metals & low EA/ IE/ EN & \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} ionic bonding & forms salts (nonmetal and metal) & & \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \seqsplit{metallic} solids & shiny \{\{nl\}\} conductors \{\{nl\}\} insoluble in water \{\{nl\}\} "ductile" \{\{nl\}\} malleable \seqsplit{moderate-high} melting points & & \tn % Row Count 16 (+ 11) % Row 3 \SetRowColor{white} ionic solid -{}- salts & hard and brittle \{\{nl\}\} white \{\{nl\}\} soluble in water \{\{nl\}\} {\emph{not}} good conductor (unless in solution \seqsplit{(dissolved)} or melted) \{\{nl\}\} {\emph{very}} high melting point & & \tn % Row Count 31 (+ 15) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{1.512 cm} x{2.088 cm} x{2.88 cm} p{0.72 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{8.4cm}}{\bf\textcolor{white}{Bonds \textasciitilde{} metallic ionic covalent (cont)}} \tn % Row 4 \SetRowColor{LightBackground} \seqsplit{covalent} solids & hard \{\{nl\}\} high melting points & high IE/EN/EA? & \tn % Row Count 3 (+ 3) % Row 5 \SetRowColor{white} \seqsplit{molecular} solids & soft \{\{nl\}\} low melting pt & & \tn % Row Count 6 (+ 3) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{4}{x{8.4cm}}{} \tn % Row Count 6 (+ 0) % Row 7 \SetRowColor{white} \seqsplit{metallic} solids & shiny because... \{\{nl\}\} band theory where the d and s electron energy levels are so close together adn in a lattice there are so many and they are so close they seem to form almost a band that has many energy levels for electrons to jump to. & malleable because in the lattice the electrons are delocalized while the nuclei are not. This means that when manipulated the electons can freely move making the structure malleable & \tn % Row Count 28 (+ 22) \hhline{>{\arrayrulecolor{DarkBackground}}----} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{unit cells}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/vanessag_1510075762_unit cell faces.JPG}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.84 cm} x{4.16 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Webassign questions to look at}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Webassign}} & {\bf{Question}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} HW 02: WebAssign Questions (Homework) & HELP: 8, 9, 13 \{\{nl\}\} Solidify: 10, 11, 14, \tn % Row Count 4 (+ 3) % Row 2 \SetRowColor{LightBackground} HW 02: CDS Questions (Homework) & 1 \{\{nl\}\} REVIEW: 2 \tn % Row Count 6 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{p{0.72 cm} x{4.248 cm} x{1.512 cm} p{0.72 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{8.4cm}}{\bf\textcolor{white}{Assessing the Student Response tips}} \tn % Row 0 \SetRowColor{LightBackground} LoMP & make sure one element ({\emph{mass}}) is {\bf{{\emph{fixed}}}} & make sure ra & \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{4}{x{8.4cm}}{LoDP} \tn % Row Count 3 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}----} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{p{0.72 cm} p{0.72 cm} p{0.72 cm} p{0.72 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{8.4cm}}{\bf\textcolor{white}{Unit 3 -{}- Concepts!}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{4}{x{8.4cm}}{} \tn % Row Count 0 (+ 0) \hhline{>{\arrayrulecolor{DarkBackground}}----} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{p{0.8 cm} p{0.8 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Unit 4 -{}- Concepts!}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{} \tn % Row Count 0 (+ 0) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.84 cm} x{4.16 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Review! dummy}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Test}} & {\bf{Question}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} Unit 1 Test & Question 3 \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} & Question 5 \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} & Question 7 \tn % Row Count 4 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Unit 2 Test} \tn % Row Count 5 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}