
Architectural Concepts 1 Cheat Sheet
by vaibhavsk via cheatography.com/205698/cs/43899/

SOLID PrinciplesSOLID Principles

Single Respon​sib​ility Principle (SRP):Single Respon​sib​ility Principle (SRP): A
class should have only one reason to
change, meaning it should have a single
respon​sib​ility or concern.

Open-C​losed Principle (OCP):Open-C​losed Principle (OCP): Software
entities (classes, modules, functions) should
be open for extension but closed for modifi​‐
cation. This means that you should be able
to add new functi​onality without modifying
existing code.

Liskov Substi​tution Principle (LSP):Liskov Substi​tution Principle (LSP):
Subtypes must be substi​tutable for their
base types without altering the correc​tness
of the program. In other words, derived
classes should be able to be used in place
of their base classes without causing
issues.

Interface Segreg​ation Principle (ISP):Interface Segreg​ation Principle (ISP):
Clients should not be forced to depend on
interfaces they do not use. Instead of having
a single large interface, it is better to have
smaller and more specific interf​aces.

Dependency Inversion Principle (DIP):Dependency Inversion Principle (DIP):
High-level modules should not depend on
low-level modules. Both should depend on
abstra​ctions. Abstra​ctions should not
depend on details; details should depend on
abstra​ctions. This principle promotes loose
coupling and allows for easier modifi​cation
and testing.

Creational PatternsCreational Patterns

Singleton:Singleton: Ensures only one instance of a
class is created and provides a global point
of access to it.

Factory Method:Factory Method: Defines an interface for
creating objects but allows subclasses to
decide which class to instan​tiate.

Abstract Factory:Abstract Factory: Provides an interface for
creating families of related or dependent
objects without specifying their concrete
classes.

Builder:Builder: Separates the constr​uction of
complex objects from their repres​ent​ation,
allowing the same constr​uction process to
create different repres​ent​ations.

Creational Patterns (cont)Creational Patterns (cont)

Prototype:Prototype: Creates new objects by cloning
existing ones, avoiding the need for
complex initia​liz​ation.

Why MICROS​ERV​ICES?Why MICROS​ERV​ICES?

Scalab​ility:Scalab​ility: Each micros​ervice can be
deployed and scaled indivi​dually, enabling
better resource utiliz​ation and handling
varying levels of load

Flexib​ility and Agility:Flexib​ility and Agility: using different techno​‐
logies and progra​mming languages if
needed for different services. Faster
develo​pment and deployment cycles

Fault Isolation and Resili​ence:Fault Isolation and Resili​ence: Failures are
isolated to individual services. Resiliency
can be implem​ented by redund​ancy,
fallback mechan​isms, and graceful degrad​‐
ation

Continuous Delivery and DevOps:Continuous Delivery and DevOps: Each
micros​ervice can have its own develo​‐
pment, testing, and deployment pipeline,
allowing for faster iterations and faster time
to market.

Structural PatternsStructural Patterns

Adapter:Adapter: Converts the interface of a class
into another interface that clients expect,
allowing classes with incomp​atible
interfaces to work together.

Decorator:Decorator: Dynami​cally adds new behaviors
to an object by wrapping it in a decorator
object that provides additional functi​ona​lity.

Proxy:Proxy: Provides a surrogate or placeh​older
object that controls access to another
object, adding extra functi​onality or contro​‐
lling the object's access permis​sions.

Composite:Composite: Composes objects into tree
structures to represent part-whole hierar​‐
chies, allowing clients to treat individual
objects and compos​itions uniformly.

Facade:Facade: Provides a unified interface to a set
of interfaces in a subsystem, simpli​fying its
usage for clients.

Micros​ervices Commun​icationMicros​ervices Commun​ication

HTTP/REST:HTTP/REST: HTTP with RESTful APIs.
Each micros​ervice exposes a set of well-d​‐
efined endpoints.

Messag​ing​/Ev​ent​-dr​iven:Messag​ing​/Ev​ent​-dr​iven: Commun​icate
with each other through asynch​ronous
messaging using a message broker or
event bus. One micros​ervice publishes
events or messages, and other micros​‐
ervices can subscribe to these events and
react accord​ingly. Allows for loose coupling
and enables better scalab​ility and fault
tolerance.

RPC (Remote Procedure Call):RPC (Remote Procedure Call): RPC is a
commun​ication pattern where one micros​‐
ervice directly calls a method or service in
another micros​ervice.

Service Mesh:Service Mesh: A service mesh is a
dedicated infras​tru​cture layer that handles
commun​ication between micros​erv​ices.
Provides features like service discovery,
load balancing, and security.

API Gateway:API Gateway: An API gateway acts as a
single entry point for client applic​ations to
commun​icate with multiple micros​erv​ices. It
can handle authen​tic​ation, request routing,
load balancing, and protocol transl​ation.
API gateways provide a unified interface for
clients and help to decouple frontend
applic​ations from the comple​xities of
micros​ervices commun​ica​tion.

Behavioral PatternsBehavioral Patterns

http://www.cheatography.com/
http://www.cheatography.com/vaibhavsk/
http://www.cheatography.com/vaibhavsk/cheat-sheets/architectural-concepts-1

Observer:Observer: Defines a one-to​-many
dependency between objects, so that when
one object changes state, all its dependents
are notified and updated automa​tic​ally.

Strategy:Strategy: Defines a family of interc​han​‐
geable algorithms and encaps​ulates each
one, allowing them to be used interc​han​‐
geably based on the context.

Command:Command: Encaps​ulates a request as an
object, allowing clients to parame​terize
clients with queues, requests, and operat​‐
ions.

Iterator:Iterator: Provides a way to access elements
of an aggregate object sequen​tially without
exposing its underlying repres​ent​ation.

Template Method:Template Method: Defines the skeleton of
an algorithm in a base class, while allowing
subclasses to override certain steps of the
algorithm.

By vaibhavskvaibhavsk
cheatography.com/vaibhavsk/

Not published yet.
Last updated 24th July, 2024.
Page 1 of 2.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/vaibhavsk/
https://readable.com

	Architectural Concepts 1 Cheat Sheet - Page 1
	SOLID Principles
	Micros­ervices Commun­ication
	Why MICROS­ERV­ICES?
	Structural Patterns
	Creational Patterns
	Behavioral Patterns

