Cheatography

SOLID Principles

Single Responsibility Principle (SRP): A
class should have only one reason to
change, meaning it should have a single
responsibility or concern.

Open-Closed Principle (OCP): Software
entities (classes, modules, functions) should
be open for extension but closed for modifi-
cation. This means that you should be able
to add new functionality without modifying
existing code.

Liskov Substitution Principle (LSP):
Subtypes must be substitutable for their
base types without altering the correctness
of the program. In other words, derived
classes should be able to be used in place
of their base classes without causing
issues.

Interface Segregation Principle (ISP):
Clients should not be forced to depend on
interfaces they do not use. Instead of having
a single large interface, it is better to have
smaller and more specific interfaces.

Dependency Inversion Principle (DIP):
High-level modules should not depend on
low-level modules. Both should depend on
abstractions. Abstractions should not
depend on details; details should depend on
abstractions. This principle promotes loose
coupling and allows for easier modification
and testing.

Creational Patterns

Singleton: Ensures only one instance of a
class is created and provides a global point
of access to it.

Factory Method: Defines an interface for
creating objects but allows subclasses to
decide which class to instantiate.

Abstract Factory: Provides an interface for
creating families of related or dependent
objects without specifying their concrete
classes.

Builder: Separates the construction of
complex objects from their representation,
allowing the same construction process to
create different representations.

Architectural Concepts 1 Cheat Sheet
by vaibhavsk via cheatography.com/205698/cs/43899/

Creational Patterns (cont)

Prototype: Creates new objects by cloning
existing ones, avoiding the need for
complex initialization.

Why MICROSERVICES?

Scalability: Each microservice can be
deployed and scaled individually, enabling
better resource utilization and handling
varying levels of load

Flexibility and Agility: using different techno-
logies and programming languages if
needed for different services. Faster
development and deployment cycles

Fault Isolation and Resilience: Failures are
isolated to individual services. Resiliency
can be implemented by redundancy,
fallback mechanisms, and graceful degrad-
ation

Continuous Delivery and DevOps: Each
microservice can have its own develo-
pment, testing, and deployment pipeline,
allowing for faster iterations and faster time
to market.

Structural Patterns

Adapter: Converts the interface of a class
into another interface that clients expect,
allowing classes with incompatible
interfaces to work together.

Decorator: Dynamically adds new behaviors
to an object by wrapping it in a decorator
object that provides additional functionality.

Proxy: Provides a surrogate or placeholder
object that controls access to another
object, adding extra functionality or contro-
lling the object's access permissions.

Composite: Composes objects into tree
structures to represent part-whole hierar-
chies, allowing clients to treat individual
objects and compositions uniformly.

Facade: Provides a unified interface to a set

of interfaces in a subsystem, simplifying its
usage for clients.

Microservices Communication

HTTP/REST: HTTP with RESTful APIs.
Each microservice exposes a set of well-d-
efined endpoints.

Messaging/Event-driven: Communicate
with each other through asynchronous
messaging using a message broker or
event bus. One microservice publishes
events or messages, and other micros-
ervices can subscribe to these events and
react accordingly. Allows for loose coupling
and enables better scalability and fault
tolerance.

RPC (Remote Procedure Call): RPC is a
communication pattern where one micros-
ervice directly calls a method or service in
another microservice.

Service Mesh: A service mesh is a
dedicated infrastructure layer that handles
communication between microservices.
Provides features like service discovery,
load balancing, and security.

API Gateway: An API gateway acts as a
single entry point for client applications to
communicate with multiple microservices. It
can handle authentication, request routing,
load balancing, and protocol translation.
APl gateways provide a unified interface for
clients and help to decouple frontend
applications from the complexities of
microservices communication.

Behavioral Patterns



http://www.cheatography.com/
http://www.cheatography.com/vaibhavsk/
http://www.cheatography.com/vaibhavsk/cheat-sheets/architectural-concepts-1

By vaibhavsk

cheatography.com/vaibhavsk/

Not published yet.
Last updated 24th July, 2024.
Page 1 of 2.

Observer: Defines a one-to-many
dependency between objects, so that when
one object changes state, all its dependents
are notified and updated automatically.

Strategy: Defines a family of interchan-
geable algorithms and encapsulates each
one, allowing them to be used interchan-
geably based on the context.

Command: Encapsulates a request as an
object, allowing clients to parameterize
clients with queues, requests, and operat-
ions.

Iterator: Provides a way to access elements
of an aggregate object sequentially without
exposing its underlying representation.

Template Method: Defines the skeleton of
an algorithm in a base class, while allowing
subclasses to override certain steps of the
algorithm.

Sponsored by Readable.com
Measure your website readability!
https://readable.com


http://www.cheatography.com/vaibhavsk/
https://readable.com

	Architectural Concepts 1 Cheat Sheet - Page 1
	SOLID Principles
	Micros­ervices Commun­ication
	Why MICROS­ERV­ICES?
	Structural Patterns
	Creational Patterns
	Behavioral Patterns


