\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{userunkn0wn} \pdfinfo{ /Title (phys2.pdf) /Creator (Cheatography) /Author (userunkn0wn) /Subject (Phys2 Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{A3A3A3} \definecolor{LightBackground}{HTML}{F3F3F3} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Phys2 Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{userunkn0wn} via \textcolor{DarkBackground}{\uline{cheatography.com/163016/cs/34172/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}userunkn0wn \\ \uline{cheatography.com/userunkn0wn} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Published 13th September, 2022.\\ Updated 13th September, 2022.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{2} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{4.1: Charge and Current}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Conductors:}} A material that allows the flow of electrical charge. Good conductors have a larger amount of free charge carriers to carry a current.} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Conservation of Charge:}} The total charge in a system cannot change.} \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Conventional Current:}} The flow from positive to negative, used to describe the direction of current in a circuit.} \tn % Row Count 8 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Coulomb: }}The unit of charge.} \tn % Row Count 9 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Electric Current: }}The rate of flow of charge in a circuit.} \tn % Row Count 11 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Electrolytes:}} Substances that contain ions that when dissolved in a solution, act as charge carriers and allow current to flow.} \tn % Row Count 14 (+ 3) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Electron Flow:}} The opposite direction to conventional current flow. Electrons flow from negative to positive.} \tn % Row Count 17 (+ 3) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Elementary Charge:}} The smallest possible charge, equal to the charge of an electron.} \tn % Row Count 19 (+ 2) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Insulators:}} A material that has no free charge carriers and so doesn't allow the flow of electrical charge.} \tn % Row Count 22 (+ 3) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Kirchhoff's First Law:}} A consequence of the conservation of charge. The total current entering a junction must equal the total current leaving it.} \tn % Row Count 25 (+ 3) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Mean Drift Velocity:}} The average velocity of an electron passing through an object. It is proportional to the current, and inversely proportional to the number of charge carriers and the cross-sectional area of the object.} \tn % Row Count 30 (+ 5) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{4.1: Charge and Current (cont)}} \tn % Row 11 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Quantisation of Charge:}} The idea that charge can only exist in discrete packets of multiples of the elementary charge.} \tn % Row Count 3 (+ 3) % Row 12 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Semiconductors:}} A material that has the ability to change its number of charge carriers, and so its ability to conduct electricity. Light dependent resistors and thermistors are both examples.} \tn % Row Count 7 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{4.4: Waves}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Amplitude:}} A wave's maximum displacement from its equilibrium position.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Antinodes:}} A position of maximum displacement in a stationary wave} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Coherence:}} Waves with the same frequency and constant phase difference} \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Constructive Interference:}} The type of interference that occurs when two waves meet in phase. The wave amplitudes are superposed.} \tn % Row Count 9 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Critical Angle:}} The angle of incidence that results in an angle of refraction of exactly 90o . It is when the refracted ray travels along the boundary line.} \tn % Row Count 13 (+ 4) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Destructive Interference:}} The type of interference that occurs when the two waves are in antiphase. When one wave is at a peak and one is at a trough their addition results in a minimum point.} \tn % Row Count 17 (+ 4) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Diffraction: }}The spreading of waves as they pass through a gap of a similar magnitude to their wavelength.} \tn % Row Count 20 (+ 3) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Displacement: }}The distance that a point on a wave is from its equilibrium position.} \tn % Row Count 22 (+ 2) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Electromagnetic Spectrum:}} The spectrum of electromagnetic waves, consisting of Gamma Rays, X-Rays, Ultraviolet, Visible Light, Infrared, Microwaves and Radiowaves.} \tn % Row Count 26 (+ 4) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Electromagnetic Waves:}} Waves that consist of perpendicular electric and magnetic oscillations. All electromagnetic waves travel at the speed of light in a vacuum.} \tn % Row Count 30 (+ 4) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{4.4: Waves (cont)}} \tn % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Frequency:}} The number of waves that pass a point in a unit time period. It is the inverse of the time period.} \tn % Row Count 3 (+ 3) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Fundamental Mode of Vibration: }}The oscillation of a wave at its natural frequency.} \tn % Row Count 5 (+ 2) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Intensity: }}The power transferred per unit area. It is proportional to the square of a wave's amplitude.} \tn % Row Count 8 (+ 3) % Row 13 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Interference:}} The superposition of the amplitudes of waves when they meet.} \tn % Row Count 10 (+ 2) % Row 14 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Longitudinal Waves:}} A wave with oscillations that are parallel to the direction of energy propagation. Sound waves are an example of a longitudinal wave. They cannot travel through a vacuum.} \tn % Row Count 14 (+ 4) % Row 15 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Nodes:}} A position of minimum displacement in a stationary wave.} \tn % Row Count 16 (+ 2) % Row 16 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Oscilloscope:}} A device used to display and analyse waveforms.} \tn % Row Count 18 (+ 2) % Row 17 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Path Difference:}} A measure of how far ahead a wave is compared to another wave, usually expressed in terms of the wavelength.} \tn % Row Count 21 (+ 3) % Row 18 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Period:}} The time taken for a wave to complete one full cycle} \tn % Row Count 23 (+ 2) % Row 19 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Phase Difference:}} The difference in phase between two points on a wave. It is usually expressed in radians} \tn % Row Count 26 (+ 3) % Row 20 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Polarisation:}} The restriction of a wave so that it can only oscillate in a single plane. This can only occur for transverse waves.} \tn % Row Count 29 (+ 3) % Row 21 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Progressive Waves:}} Waves that transfer energy from one point to another without a transfer of matter.} \tn % Row Count 32 (+ 3) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{4.4: Waves (cont)}} \tn % Row 22 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Reflection:}} The bouncing of a wave at a boundary. The angle of incidence will equal to the angle of reflection.} \tn % Row Count 3 (+ 3) % Row 23 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Refraction:}} The changing of speed of a wave as it passes into a new medium. If it passes into an optically denser medium, it will slow down} \tn % Row Count 6 (+ 3) % Row 24 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Refractive Index:}} A material property that is equal to the ratio between the speed of light in a vacuum, and the speed of light in a given material.} \tn % Row Count 10 (+ 4) % Row 25 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Stationary Wave:}} A wave that stores, but does not transfer, energy.} \tn % Row Count 12 (+ 2) % Row 26 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Superposition:}} When two waves meet at the same point in space their displacements combine and the total displacement at that point becomes the sum of the individual displacements at that point} \tn % Row Count 16 (+ 4) % Row 27 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Total Internal Reflection:}} An effect that occurs in optical fibres, where full reflection occurs at the inside boundary of the fibre, meaning no radiation passes out. The angle of incidence must be greater than the critical angle for this to occur.} \tn % Row Count 22 (+ 6) % Row 28 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Transverse Waves:}} A wave with oscillations that are perpendicular to the direction of energy propagation. Electromagnetic waves are examples of transverse waves} \tn % Row Count 26 (+ 4) % Row 29 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Wave Speed:}} The product of a wave's frequency and wavelength} \tn % Row Count 28 (+ 2) % Row 30 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Wavelength:}} The distance between two identical positions on two adjacent waves. It is commonly measured from peak to peak or trough to trough.} \tn % Row Count 31 (+ 3) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{4.4: Waves (cont)}} \tn % Row 31 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Young Double-Slit Experiment:}} An experiment that demonstrates the diffraction of light by passing monochromatic light across two narrow slits and observing the resulting pattern of bright and dark fringes.} \tn % Row Count 5 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{4.2: Energy, Power and Resistance}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Diode:}} A component that allows current through in one direction only. In the correct direction, diodes have a threshold voltage (typically 0.6 V) above which current can flow} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Electromotive Force:}} The energy supplied by a source per unit charge passing through the source, measured in volts.} \tn % Row Count 7 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Filament Lamp:}} A bulb consisting of a metal filament, that heats up and glows to produce light. As the filament increases in temperature, its resistance increases since the metal ions vibrate more and make it harder for the charge carriers to pass through.} \tn % Row Count 13 (+ 6) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{I-V Characteristics:}} Plots of current against voltage, that show how different components behave.} \tn % Row Count 16 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Kilowatt-Hour:}} A unit of electrical energy. It is usually used to measure domestic power consumption.} \tn % Row Count 19 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Light-Dependent Resistor:}} A light sensitive semiconductor whose resistance increases when light intensity decreases.} \tn % Row Count 22 (+ 3) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Ohm:}} The unit of resistance.} \tn % Row Count 23 (+ 1) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Ohmic Conductor:}} A conductor for which the current flow is directly proportional to the potential difference across it, when under constant physical conditions.} \tn % Row Count 27 (+ 4) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Ohm's Law: }}The current and potential difference through an ohmic conductor held under constant physical conditions are directly proportional, with the constant of proportionality being resistance.} \tn % Row Count 32 (+ 5) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{4.2: Energy, Power and Resistance (cont)}} \tn % Row 9 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Potential Difference: }}The difference in electrical potential between two points in a circuit. It is also the work done per coulomb to move a charge from the lower potential point to the higher potential point. It is measured in Volts} \tn % Row Count 5 (+ 5) % Row 10 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Power: }}The rate of energy transfer in a circuit. It can be calculated as the product of the current and the potential difference between two points. It is measured in Watts.} \tn % Row Count 9 (+ 4) % Row 11 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Resistance:}} A measure of how difficult it is for current to flow through a material.} \tn % Row Count 11 (+ 2) % Row 12 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Resistivity:}} A measure of how difficult it is for charge to travel through a material. It is proportional to the object's resistance and cross-sectional area, and inversely proportional to the object's length. It is measured in Ohm metres} \tn % Row Count 16 (+ 5) % Row 13 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Resistor:}} A device that has a fixed resistance and follows Ohm's law} \tn % Row Count 18 (+ 2) % Row 14 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Volt:}} The unit of potential difference.} \tn % Row Count 19 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{4.3: Electrical Circuits}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Conservation of Energy:}} Energy cannot be created or destroyed - it can only be transferred into different forms.} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Conservation of Energy: }}Energy cannot be created or destroyed - it can only be transferred into different forms.} \tn % Row Count 6 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Kirchhoff's Second Law:}} A consequence of the conservation of energy. The sum of the voltages in any closed loop must equal zero} \tn % Row Count 9 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Lost Volts: }}The difference between a source's emf and the terminal voltage. It is equal to the potential difference across the source's internal resistance.} \tn % Row Count 13 (+ 4) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Parallel Circuit:}} Components are said to be connected in parallel when they are connected across each other (separate loops).} \tn % Row Count 16 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Potential Divider:}} A method of splitting a potential difference, by connecting two resistors in series. The total potential difference is split in the ratio of their resistances.} \tn % Row Count 20 (+ 4) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Resistors in Parallel:}} The potential difference across resistors connected in parallel is identical for each resistor. The current is split between the resistors. The total resistance is equal to the inverse of the sum of the inverses of the resistances of the resistors} \tn % Row Count 26 (+ 6) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Resistors in Series:}} The current through resistors connected in series is identical for each resistor. The potential difference is split in the ratio of their resistances. The total resistance is equal to the sum of the resistances of the resistors.} \tn % Row Count 32 (+ 6) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{4.3: Electrical Circuits (cont)}} \tn % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Sensor Circuits:}} A circuit that reacts to external conditions. They commonly involve a semiconductor connected in a potential divider arrangement.} \tn % Row Count 3 (+ 3) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Series Circuit:}} Components are said to be connected in series when they are connected end to end (in one loop).} \tn % Row Count 6 (+ 3) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Terminal PD:}} The potential difference across the terminals of a power source. It is equal to the source's emf minus any voltage drop over the source's internal resistance.} \tn % Row Count 10 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}