Cheatography

Chemistry Cheat Sheet by usama8800 (usama8800) via cheatography.com/19586/cs/2587/

CaO Cycle		
CaCO3	⇒	CaO + CO2
CaO + H2O	\Rightarrow	Ca(OH)2
Ca(OH)2 + CO2	\Rightarrow	CaCO3 + H2O

Eutrophication

Eutrophication arises from the oversupply of nutrients, which induces explosive growth of plants and algae which, when such organisms die, consume the oxygen in the body of water, thereby creating the state of hypoxia.

Reactivity Series

Pottasium	К
Sodium	Na
Calcium	Ca
Magnesium	Mg
Aluminium	Al
Zinc	Zn
Iron	Fe
Lead	Pb
Hydrogen	Н
Copper	Cu
Mercury	Hg
Silver	Ag
Gold	Au

Reactivity increases upwards

More reactive a metal is, it will be less stable in its elemental form

Compounds of a more reactive metal will be more stable than the compounds of a less reactive metal

Extraction of Metals

The method of extraction of metals depends on the reactivity of the metal or the stability of the metal compound (usually metal oxides or chlorides).

There are three methods for the extraction of metals:

1. Electrolytic Reduction of molten metal compounds.

2. Chemical reduction by heating metal oxide

with carbon

3. Thermal Decomposition

K - Al by Method 1

Zn - Cu by Method 2 Hg - Ag by Method 3

Composition of Air		
Nitrogen	78% ≈ 80%	
Oxygen	21% ≈ 20%	
Other Gases	1%	

Experimental Verification of Oxygen in Air

Diagram

Cu is heated

Plungers in A and B are moved back and forth so that air passes over Cu again and again until there is no decrease in volume

2CuO(s)

$2Cu(s) + O2 \Rightarrow he$

Fractional Distillation of Air

CO2 and H2O and any dust particles are removed.

Air is cooled to -200°C. Air is liquified at this temperature

On increasing the temperature, N2 boils off at - 196°C, Ar at -185°C and O2 at -183°C

Air Pollutants			
Pollu tant	Source	Effect	How to reduce?
CO	Incomplete combustion in car engines or furnaces	It forms carboxylic- hemoglobin and can cause death	Keep the car engine well tuned.
SO2/ SO3	Burning of coal & fossil fuels and volcanic eruptions	Can cause acid rain	Fuel should be desulfuriz ed.
NxOy	Lightning and Car Engines	Causes acid rain and is irritant and causes rashes and breathing problems; asthma.	Using catalytic converter.

By **usama8800** (usama8800) cheatography.com/usama8800/ usama8800.co.nf/ Not published yet. Last updated 26th September, 2014. Page 1 of 4. Sponsored by **Readability-Score.com** Measure your website readability! https://readability-score.com

Cheatography

Chemistry Cheat Sheet by usama8800 (usama8800) via cheatography.com/19586/cs/2587/

Haber Process	
N2 Source	Fractional Distillation of air
H2 Source	Oil or Natural Gas
Temperature	500 ⁰ C
Pressure	200 - 250 atm
Catalyst	Powdered Iron(Fe)
$N2(g) + 3H(g) \Leftrightarrow$	2NH3(g)

Manufacture of Ammonia

Properties of Ammoni	а	
Physical		
Colourless Gas		
Has pungent smell		
Lighter than air; $Mr = 17$	7	
Highly soluble in water		
Weakly basic; Turns da blue	mped	l red litmus paper
Irritant and can cause rashes		
Chemical		
Dissolves in water to produce ammonium hydroxide		
NH3(g) + H2O(l)	⇔	NH4OH(aq)
Reacts with acids to produce salts		
NH3 + HCI	\Rightarrow	NH4CI
2NH3 + H2SO4	\Rightarrow	(NH4)2SO4
NH3 + HNO3	\Rightarrow	NH4NO3

By **usama8800** (usama8800) cheatography.com/usama8800/ usama8800.co.nf/ Uses of Ammonia

A large amount of ammonia is used to make fertilizers

An important lab reagent; Used to identify metal cations

Used to manufacture of Explosives

Used as a Refrigerant

Used in Pharmaceutical Industry

Used to manufacture cosmetics

Extraction of Iron			
Ore	Haematite	Haematite (Fe2O3)	
Method	2 (refer to Metals)	Extraction of	
Reducing Agent	Carbon (C)	Carbon Monoxide (CO)	
Chemical Reactions	in Blast Fu	irnace	
C + O`2	⇒	CO2	
CO2 + C	\Rightarrow	2CO	
3C + 2Fe2O3	\Rightarrow	4Fe + 3CO2	
3CO + Fe2O3	\Rightarrow	2Fe + 3CO2	
Haematite contains sand (SiO2) as impurity which is converted to slag (floats on surface) by the following reaction			
CaCO3	⇒	CaO + CO2	

Extraction of Iron (cont)

	/	
CaO + SiO2	\Rightarrow	CaSiO3 (slag)
Steel		
Low carbon steel		upto 0.3% C
Medium carbon steel		0.4 - 0.6 % C
High carbon steel		0.7 - 1 % C

Rusting of Iron

Iron reacts with O2 in presence of H2O (moisture) to form Fe2O3·XH2O (rust)

Reaction is slow but is promoted in presence of any electrolyte in water especially under acidic conditions

Prevention Coating Coating Iron with plastic, paint, oil or grease Electroplating Electroplating Iron with chromium, nickel, silver Galvonizing Dipping in molten zinc to coat with zinc metal Cathodic Connecting Iron body to Protection negative terminal of a battery Sacrificial Attaching Iron to a more Protection reactive metal eg Mg or Zn

Not published yet. Last updated 26th September, 2014. Page 2 of 4. Sponsored by **Readability-Score.com** Measure your website readability! https://readability-score.com

Cheatography

Chemistry Cheat Sheet by usama8800 (usama8800) via cheatography.com/19586/cs/2587/

Properties of Sulfur

It is a yellow solid			
It has a low melting poi	int of 1	13°C	
Found as a mineral			
Burns with blue flames	to pro	duce SO2	
SO2 is highly soluble in	n water		
SO2 can be further oxidized to SO3 which causes acid rain			
SO3 + H2O	\Rightarrow	H2SO4	
Contact Process			

	-	
Burning of Sulfu	ır to produ	ice SO2
S + O2	\Rightarrow	SO2
Catalytic oxidati	ion of SO2	to SO3
2SO2 + O2	⇔	2SO3
600 ^o C	1-2 atm	V2O5 as catalyst
Making Oleum		
SO3 is dissolved (H2S2O7)	in H2SO41	to form Oleum
SO3 + H2SO4	\Rightarrow	H2S2O7
React with wate	r	
H2S2O7 + H2O	⇒	2H2SO4
Manufacture of H	204 (Sulfu	ric Acid)

Extraction of Aluminium		
Method	1 (refer to E	xtraction of Metals)
Ore	Bauxite (Al2O3)	MP = 2000°C
To preven	t to heating to s	0

temperature, Bauxite is dissolved in molten Cryolite (Na2AIF6) which melts at 900^oC

Graphite electrodes are used.

At Cathode		
$AI^{3+} + 3e^{-}$	\Rightarrow	Al(I)
		$MP=660^{O}C$
At Anode		
O ²⁻ (I)	\Rightarrow	O + 2e ⁻
0 + 0	\Rightarrow	O2

Oxygen produced at anode reacts with C (from the anode) due to high temperature and produces CO or CO2

Anode burns away and needs to be replaced periodically

Properties and Uses of Aluminium

Light metal with high tensile strength

Very good conductor (three valance electrons)

Can reflect light and heat radiation

Used in aircraft bodies

Used in circuit wires

Used in milk tanks

By **usama8800** (usama8800) cheatography.com/usama8800/ usama8800.co.nf/ Not published yet. Last updated 26th September, 2014. Page 3 of 4.

Sponsored by **Readability-Score.com** Measure your website readability! https://readability-score.com

Properties and Uses of Aluminium (cont) Cost of Al cost of electricut is high cost of graphite anodes cost of fuel to keep electrolyte molten Rusting Al reacts with O2 to form a non-porous Al2O3 coating which seals

Al inside