Cheatography

Chemistry Cheat Sheet by usama8800 (usama8800) via cheatography.com/19586/cs/2587/

CaO Cycle		
CaCO3	⇒	CaO + CO2
CaO + H2O	\Rightarrow	Ca(OH)2
Ca(OH)2 + CO2	⇒	CaCO3 + H2O

Eutrophication

Eutrophication arises from the oversupply of nutrients, which induces explosive growth of plants and algae which, when such organisms die, consume the oxygen in the body of water, thereby creating the state of hypoxia.

Reactivity Series

Pottasium	К
Sodium	Na
Calcium	Ca
Magnesium	Mg
Aluminium	AI
Zinc	Zn
Iron	Fe
Lead	Pb
Hydrogen	Н
Copper	Cu
Mercury	Hg
Silver	Ag
Gold	Au
B	

Reactivity increases upwards

More reactive a metal is, it will be less stable in its elemental form

Compounds of a more reactive metal will be more stable than the compounds of a less reactive metal

Extraction of Metals

The method of extraction of metals depends on the reactivity of the metal or the stability of the metal compound (usually metal oxides or chlorides).

There are three methods for the extraction of metals:

1. Electrolytic Reduction of molten metal compounds.

2. Chemical reduction by heating metal oxide with carbon

3. Thermal Decomposition

- K Al by Method 1
- Zn Cu by Method 2

Hg - Ag by Method 3

Composition of Air	
Nitrogen	78% ≈ 80%
Oxygen	21% ≈ 20%
Other Gases	1%

Experimental Verification of Oxygen in Air

Diagram

Cu is heated

Plungers in A and B are moved back and forth so that air passes over Cu again and again until there is no decrease in volume

2CuO(s)

2Cu(s) + O2	⇒ heat
-------------	--------

Fractional Distillation of Air

CO2 and H2O and any dust particles are removed.

Air is cooled to -200°C. Air is liquified at this temperature

On increasing the temperature, N2 boils off at - 196°C, Ar at -185°C and O2 at -183°C

Air Pollutants			
Pollu tant	Source	Effect	How to reduce?
CO	Incomplete combustion in car engines or furnaces	It forms carboxylic- hemoglobin and can cause death	Keep the car engine well tuned.
SO2/ SO3	Burning of coal & fossil fuels and volcanic eruptions	Can cause acid rain	Fuel should be desulfuriz ed.
NxOy	Lightning and Car Engines	Causes acid rain and is irritant and causes rashes and breathing problems; asthma.	Using catalytic converter.

By **usama8800** (usama8800) cheatography.com/usama8800/ usama8800.co.nf/ Not published yet. Last updated 26th September, 2014. Page 1 of 4. Sponsored by **Readability-Score.com** Measure your website readability! https://readability-score.com

Cheatography

Chemistry Cheat Sheet by usama8800 (usama8800) via cheatography.com/19586/cs/2587/

Haber Process	\$	
N2 Source		Fractional Distillation of air
H2 Source		Oil or Natural Gas
Temperature		500 ^o C
Pressure		200 - 250 atm
Catalyst		Powdered Iron(Fe)
N2(g) + 3H(g)	⇔	2NH3(g)

Manufacture of Ammonia

Properties of Ammonia		
Physical		
Colourless Gas		
Has pungent smell		
Lighter than air; Mr = 17		
Highly soluble in water		
Weakly basic; Turns damped red litmus paper blue		
Irritant and can cause rashes		
Chemical		
Dissolves in water to produce ammonium hydroxide		
NH3(g) + H2O(I)	⇔	NH4OH(aq)
Reacts with acids to pro	duce	salts
NH3 + HCI	\Rightarrow	NH4CI
2NH3 + H2SO4	\Rightarrow	(NH4)2SO4
NH3 + HNO3	⇒	NH4NO3

By **usama8800** (usama8800) cheatography.com/usama8800/ usama8800.co.nf/

Uses of Ammonia

A large amount of ammonia is used to make fertilizers

An important lab reagent; Used to identify metal cations Used to manufacture of Explosives

Used as a Refrigerant

Used in Pharmaceutical Industry

Used to manufacture cosmetics

Extraction of Iron			
Ore	Haematite (Fe2O3)		
Method	2 (refer to Extraction of Metals)		
Reducing Agent	Carbon (C)	Carbon Monoxide (CO)	
Chemical Reactions	in Blast Furnace		
C + O`2	⇒	CO2	
CO2 + C	\Rightarrow	2CO	
3C + 2Fe2O3	⇒	4Fe + 3CO2	
3CO + Fe2O3	\Rightarrow	2Fe + 3CO2	
Haematite contains sand (SiO2) as impurity which is converted to slag (floats on surface) by the following reaction			
CaCO3	⇒	CaO + CO2	

Extraction of Iron (cont)			
CaO + SiO2	⇒	CaSiO3 (slag)	
Steel			
Low carbon steel		upto 0.3% C	
Medium carbon steel		0.4 - 0.6 % C	
High carbon steel		0.7 - 1 % C	

Rusting of Iron

Iron reacts with O2 in presence of H2O (moisture) to form Fe2O3·XH2O (rust)

Reaction is slow but is promoted in presence of any electrolyte in water especially under acidic conditions

Prevention	
Coating	Coating Iron with plastic, paint, oil or grease
Electroplating	Electroplating Iron with chromium, nickel, silver
Galvonizing	Dipping in molten zinc to coat with zinc metal
Cathodic Protection	Connecting Iron body to negative terminal of a battery
Sacrificial Protection	Attaching Iron to a more reactive metal eg Mg or Zn

Not published yet. Last updated 26th September, 2014. Page 2 of 4. Sponsored by **Readability-Score.com** Measure your website readability! https://readability-score.com

Cheatography

Chemistry Cheat Sheet by usama8800 (usama8800) via cheatography.com/19586/cs/2587/

Properties of Sulfur			
It is a yellow solid			
It has a low melting point of 119°C			
Found as a mineral			
Burns with blue flames to produce SO2			
SO2 is highly soluble in water			
SO2 can be further oxidized to SO3 which			
causes acid rain			
SO3 + H2O ⇒ H2SO4			

Contact Process

Burning of Sulfur to produce SO2				
S + O2	\Rightarrow	SO2		
Catalytic oxidat	ion of SO2	to SO3		
2SO2 + O2	⇔	2SO3		
600°C	1-2 atm	V2O5 as catalyst		
Making Oleum				
SO3 is dissolved in H2SO4 to form Oleum (H2S2O7)				
SO3 + H2SO4	\Rightarrow	H2S2O7		
React with water				
H2S2O7 + H2O	⇒	2H2SO4		
Manufacture of H2O4 (Sulfuric Acid)				

Extraction of Aluminium		
Method	1 (refer to E	xtraction of Metals)
Ore	Bauxite (Al2O3)	MP = 2000°C

To prevent to heating to such a large temperature, Bauxite is dissolved in molten Cryolite (Na2AIF6) which melts at 900^oC

Graphite electrodes are used.

At Cathode				
$AI^{3+} + 3e^{-}$	\Rightarrow	Al(I)		
		$MP=660^{O}C$		
At Anode				
O ²⁻ (I)	⇒	O + 2e ⁻		
0 + 0	\Rightarrow	02		

Oxygen produced at anode reacts with C (from the anode) due to high temperature and produces CO or CO2

Anode burns away and needs to be replaced periodically

Properties and Uses of Aluminium

Light metal with high tensile strength

Very good conductor (three valance electrons)

Can reflect light and heat radiation

Used in aircraft bodies

Used in circuit wires

Used in milk tanks

By **usama8800** (usama8800) cheatography.com/usama8800/ usama8800.co.nf/ Not published yet. Last updated 26th September, 2014. Page 3 of 4.

Properties and Uses of Aluminium (cont)		
Cost of Al is high due to:	cost of electricut	
	cost of graphite anodes	
	cost of fuel to keep electrolyte molten	
Rusting	Al reacts with O2 to form a non- porous Al2O3 coating which seals Al inside	

Sponsored by **Readability-Score.com** Measure your website readability! https://readability-score.com