FIT3176 - NoSQL Databases Cheat Sheet by Upsilon via cheatography.com/215900/cs/47066/ | Big Data | | |------------------------------|--| | NoSQL | Not Only SQL | | 3 Vs of
Big Data | Volume (size), Velocity (speed), Variety (types). | | Volume | Massive amount of data generated and stored. | | Velocity | Speed at which data is produced, transferred, and processed. | | Variety | Diversity of data formats and sources (text, images, videos, sensors, logs, etc.). | | Data
Modelling | Defining structure, relationships & rules for data. | | Relational DB query language | SQL (Structured Query
Language) | | ACID | Atomicity, Consistency, Isolation, Durability | | BASE | Basically Available, Soft state,
Eventual consistency | | Scaling | | |-------------------------------|--| | Vertical
Scaling
(up) | Add power to one server. | | Horizontal
Scaling
(up) | Cluster of low-cost servers (preferred for Big Data). | | Normal-
isation | Organising data to reduce redundancy, improve integrity. | | Denormali-
sation | Trade redundancy for faster queries. | | Data Model Components | | | |-----------------------|---------------------------------|--| | Entity | Object / Class (e.g
Student) | | | Entity
Instance | Record of a entity | | | Attribute | Property / Field (e.g Age) | | | Da | ata Mo | del Co | mpone | ents | (cont) | | |----|--------|--------|-------|------|--------|--| | | | _ | | , | 0, 1 | | | Relati- | Connection (e.g Student -> | |---------|----------------------------| | onship | EnrolledIn -> Course) | | MongoDB | | |----------------------------------|--| | Document
Oriented
Database | Subclass of key-value databases. | | Document | Encoded in format such as XML, JSON, BSON. | | Schema-
less | No predefined structure on the stored data & each document can have its own structure. | | Collection | Group of documents. | #### SQL VS MongoDB | SQL TERM | MONGODB TERM | |----------|---------------------| | database | database | | table | collection | | index | index | | row | document | | column | field | | joining | embedding & linking | | NoSQL Databases | | | | |-----------------|---|--|--| | Key-
Value | Stores simple key/value pairs. | DynamoDB,
Redis | | | Document | Stores JSON-
like
documents. | MongoDB,
CouchDB | | | Column | Stores data by columns instead of rows. | Cassandra,
BigTables | | | Graphs | vStores data
as nodes +
relationships. | Neo4j,
ArangoDB | | | Time
Series | (not part of the
unit but
whatever it still
is a type of
NoSQL
database) | Prometheus, Timescale (postgresQL fork (it's great tbh)) | | ## NoSQL - Quick Overview - Non-relational and schema-less. - Supports distributed database architectures. - Provides high scalability, and high availability. - Able to support very large amounts of sparse data. - Designed mainly towards performance rather than transaction consistency. #### NoSQL - Pros & Cons | Advantages | Disadvantages | |---|---| | High scalability, and availability | Complex programming is required. | | It uses low-cost commodity hardware. It supports Big Data. It typically improves storage efficiency. | There is no relationship support—only by application code. There is no transaction integrity support. In terms of data consistency, it provides an eventually consistent model. | ## SQL - Pros & Cons | Advantages | Disadvantage | |---|--| | Data Integrity and Accuracy Structured Data: Stable for structured data with predefined schema, making it easier to organize and query. Relationship Support: Strong support for data relationships using foreign keys and join operations. SQL Language: Uses a powerful and standardized query language (SQL) for database management and querying. | Scalability Issues: Horizontal scalability is
challenging, making it less suitable for very
large datasets or high-traffic applications. Complexity in Schema Design Requires
complex schema design and management,
which can be inflexible to changes. Performance Bottlenecks: Can face
performance bottlenecks with high-volume
read and write operations. Cost Other necture expensive hardware and
software licenses, and maintenance can be
costly. | By **Upsilon** cheatography.com/upsilon/ Not published yet. Last updated 24th September, 2025. Page 1 of 1. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com