
COMP 2131 Cheat Sheet
by ununited via cheatography.com/190700/cs/39675/

Module 1

Components of a Computer System:

Hardware: Physical components that can
be seen or touched.
Hardware affects the correc​‐
tness and perfor​mance of the
programs. CPU, GPU, APU...

Software the stuff that controls the
hardware

Computer Electronic device that process
data converting it into useful
inform​ation. Used for
converting a set of inputs into
outputs

Steps to
Start a
Computer
System

turn on- electrical signal sent
to CPU- CPU starts executing
instru​ctions from a particular
fixed address in the memory-
instru​ctions are executed one
by one- instru​ction cycle, or
the fetch execution cycle
repeats forever.

Classes of
Computers

Personal Computers, Server
Computers, Embedded
Computers, Super Computers

Signal a transm​ission of data

Analog
Waveform

ancient tech, involves using
two conductors for each line
(send and receive).

Module 1 (cont)

Digital
Waveforms

discrete waveform. Repres​‐
ented by two possible
voltages on a wire (on or off).
We use binary because the
technology is not advanced
enough for a switch to
reliably hold more than two
possible states.

Physical
Signals

Not discrete and contin​uous.

Module 1

Software

Data /
Inform​‐
ation

all inform​ation is stored in the
form of binary digits. Ex. a 1 or
a 0 in a sequence of 8 bits

ASCII
Code

is a set of 8 bits assigned
together to. represent data. For
each character, a unique byte-
sized integer is assigned.

File A collection of data. Text file can
be user program written in any
computer language or it can be
just numbers and other facts

Binary
File

collection of characters in only
machin​e-r​eadable form.
Commonly used for the
computer to read and execute.
Ex operating system

Only thing that distin​guishes different types
of data is the context in which we view them

Software Categories

Applic​‐
ation
Software

to perform a specific applic​ation

System
Software

which is required to operate a
hardware. Ex. operating
system, computer languages,
utility software etc...

Module 1 (cont)

Operating
System

It is not possible for any
computers to work without an
operating system. Popular
operating systems are Linux/​‐
Unix, Windows, iOS etc..The
main bridge between the
hardware and the user is the
operating system

Processes A process is the operating
systems abstract for a running
program. Multiple processes
can run on the system, even
on a single CPU core. The
instru​ctions for one process is
interl​eaved with the instru​‐
ctions for another process,
using context switching.

Threads A process can consist of
multiple execution units, called
threads or lightw​eight
processes, each running in
the context of the process and
sharing the same code and
global variables, but different
local variables. Multiple tabs
of a browser are the threads of
the browser process.

By ununited
cheatography.com/ununited/

Not published yet.
Last updated 19th August, 2023.
Page 1 of 26.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/ununited/
http://www.cheatography.com/ununited/cheat-sheets/comp-2131
http://www.cheatography.com/ununited/
https://readable.com

COMP 2131 Cheat Sheet
by ununited via cheatography.com/190700/cs/39675/

Module 1 (cont)

Process
vs
Threads

a process is an executing
instance of a program, also
termed "​tas​k". Always stored in
the main memory, its an active
entity; all processed are closed
when the computer system is
restarted. One program may
consist of several processed and
multiple processes can be
executed in parallel, whenever
possible. Ex. the MS Word
software running a process.
Thread is a subset if a process
or a light weight process. The
main difference is that threads
execute with the context of a
process and share the same
resources allotted to the process
by the kernal. Multiple threads
leads to true parall​elism,
possible on multip​roc​essor
systems. It works on the principle
that all the threads running within
a process share the same
address space, file descri​ptors,
stack, and other related attrib​‐
utes. Ex. in Word, when we type
something, it automa​tically
saves. SO editing and saving are
hapeing in parallel in two threads

Module 1

Registers

Module 1 (cont)

General
Purpose
Registers

The x86 archit​ecture contains
eight 32-bit General Purpose
Registers (GPRs). These
registers are mainly used to
perform address calcul​ations,
arithm​etic, and logical calcul​‐
ations. Four of the GPRs can
be treated as a 32-bit
quantity, a 16-bit quantity or
as two 8-bit quanti​ties. They
are the EAX, EBX, ECX,
EDX. R-regi​sters Ex. RAX,
RBX are just the 64-bit
version of the E general
purpose registers

EFLAGS are status registers which
monitor the results produced
from the execution of
arithmetic instru​ctions and
then perform specific tasks
based on the status report.

Sequence
of
Operations

Only one instru​ction in the
main memory, which is
pointed to by the PC, is read
(called fetched) by the CPU
and executed. This is called
the instru​ction cycle. PC is
increased after the instru​ction
fetch so that the next instru​‐
ction is pointed by PC and
read by CPU.

Module 1

Programs
and
Compil​‐
ation
Systems

A high level C program is
translated to a low-level
machine language instru​ction,
packaged into a form called an
executable object program,
and stored as a binary file.
Object programs are also
referred to as object files. A
translator Ie, a Compiler or an
interp​reter is used to translate
high-level language program to
the machine language for
execution.

Module 1 (cont)

Phases

Prepro​‐
cessing
Phase

The prepro​cessor (cpp)
modifies the original C program
according to directives that
begins with the # character.

Compil​‐
ation
Phase

The compiler (cc1) translates
the text file hello.i into the text
file hello.s which contains an
assembly language program.
Each statement in an assembly
language program exactly
describes one low level
machine language instru​ction
in a standard text form.
Assembly language is useful
because it provides a common
output language for different
compilers for different high-
level languages.

Assembly
Phase

The assembler translates
hello.s into machine language
instru​ction, packages then into
a form known as a reloca​table
object program and stored the
result in the object file hello.o.
The hello.o file is a binary file
whose bytes are encoded
machine language instru​ctions
rather than characters

By ununited
cheatography.com/ununited/

Not published yet.
Last updated 19th August, 2023.
Page 2 of 26.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/ununited/
http://www.cheatography.com/ununited/cheat-sheets/comp-2131
http://www.cheatography.com/ununited/
https://readable.com

COMP 2131 Cheat Sheet
by ununited via cheatography.com/190700/cs/39675/

Module 1 (cont)

Linking
Phase

Notice that our hello program
calls the printf function, which
is part of the standard C
library. The printf function
resides in a separate precom​‐
piled object file called printf.o,
which must somehow be
merged with our hello.o
program. The linker (ld)
handles merging, The result is
the hello file, which is an
executable object file that is
ready to be loaded into
memory and executed by the
system.

Compil​‐
ation
System

Compil​ation systems try to
produce correct efficient
machine codes but list the
errors that it could not unders​‐
tand.

Optimizing
Program
Perfor​‐
mance

Not easy for them to optimize
source code

Unders​‐
tanding
Link-time
Errors

Especially in the develo​pment
of a large software system

Avoiding
Security
Holes

Run time errors

Memory

Module 1 (cont)

Cache
Memories
(SRAM)

It might take the CPU 10 times
longer to read a file from the
disk than from the main
memory This is why the hello
program needs to be loaded
into memory before the file is
executed by the CPU so that it
may be processed faster.

Need for
Cache
Memory

Since fetch time is much
longer than execution time, its
a good idea to solve the
proces​sor​-memory gap by the
introd​uction of the cache
memory or the CPU memory.
Cache memory is very high-
speed semi conductor memory
which can speed up CPU,
acting as a buffer between the
CPU and main memory. It can
also hold those parts of DATA
and PROGRAM, which are
most frequently used by the
CPU. Those data and
programs are the first transf​‐
erred from disk to cache
memory by the OS and the
CPU can access them. It is
mostly integrated directly with
the CPU chip or it may be
placed on a separate chip and
can have a separate bus
interc​onnect with the CPU.

Module 1 (cont)

 The smaller faster and closely
located storage device is called
cache memory or simply
cache. The cache is helpful as
it speeds up the execution of
the programs. Initially
programs will be loaded into
the main memory and then
stored into cache memory or
simply cache. The cache is
helpful as it speeds up the
execution of the programs.
Initially, programs will be
loaded into the main memory
and then stored into cache
memory when execution of the
program starts. It can exist in
multiple levels Ex. L1, L2, L3 ...

Memory
Hierarchy

L0: Registers

 L1; L1 cache

 L2:L2 cache (SRAM)

 L3: L3 cache (SRAM)

 L4: Main Memory (DRAM)

 L5: Local Secondary Storage
(Local Disk)

 L6: Remote Secondary
Storage / Tertiary Storage
(distr​ibuted file systems, web
servers)

Module 1

Hardware

CPU Central Processing Unit: main brain
of the comuter also know as the
processor or core. Newer computers
have multiple cores.

By ununited
cheatography.com/ununited/

Not published yet.
Last updated 19th August, 2023.
Page 3 of 26.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/ununited/
http://www.cheatography.com/ununited/cheat-sheets/comp-2131
http://www.cheatography.com/ununited/
https://readable.com

COMP 2131 Cheat Sheet
by ununited via cheatography.com/190700/cs/39675/

Module 1 (cont)

GPU Graphics Processing Unit: made to
enhance the creation of images for
a computer display, consists of
thousands of smaller, more
efficient cores designed to handle
multiple tasks simult​ane​ously.
Main functions are texture
mapping, image rotation, transl​‐
ation, and shading.

APU Accele​rated Processing Unit: is the
main processor with additional
functi​ona​lities. APU = CPU + GPU
on a single chip

FPGA Field Progra​mmable Gate Array: is
not a processor but is capable of
creating one or multiple proces​‐
sors. The progra​mmable hardware
is completely separate from the
CPU and its used for digital design
and can be reconf​igured repeat​‐
ably. Can be used to help design
specia​lized circuits for a specific
applic​ation and can be modified for
others,

I/O Input / Output: keyboards, scanner,
mouse etc..

Main Memory

Primary Memory

RAM Random Access Memory: consists
of two types: DRAM and SRAM

Module 1 (cont)

DRAM Dynamic Random Access
Memory: is a type of semi
conductor memory where
data is stored in the form of a
charge. Each memory cell is
made up of a transistor and a
capacitor. Capacitors loose
charge due to leakage,
making DRAM volatile;
conseq​uently the device must
be regularly refreshed to
retain data

SRAM Static Random Access
Memory: (Cache): retains a
value as long as power is
supplied, SRAM is typically
faster than DRAM. Each
SRAM memory cell is
comprised of 6 transi​stors; the
cost per cell of SRAM is more
than DRAM

ROM /
PROM

non volatile, permanent. The
different types are EEPROM
and EAPROM

Secondary
Memory

Floppy, hard disks

Buses are cables used to carry data
from one component to
another. Each bus can
transmit a fixed-size bytes
known as a word that is of 4-
bytes (32 bits) or 8 bytes (64
bits).

Registers a word sized storage device
in the main memory. PC
(program counter) is a special
register pointing at (contains
the address of) some machin​‐
e-l​anguage instru​ction stored
in main memory increased
after the fetch cycle.

Module 1

Data
Structures

There are several ways
memory can be organized and
used for data storage:

Program
Code and
Data

Machine instru​ctions, data to
be processed as well as the
processed recults

Shared
Libraries

The library files (already
written and translated
programs) that are shared by
multiple processes

Heap Memory allocation as and
when is required

Stack Memory allocated for short
term storage

Kernel Virtual memory: this stores the
part of the operating system

Network A network is a set of hardware
devices that are connected
together physically or logically
so that they may share or
exchange inform​ation. The
internet is an ideal example of
a global network, also called a
network of networ​ks" The main
advantages are; data sharing,
connec​tivity, hardware and
software sharing, data security
and manage​ment, perfor​‐
mance enhanc​ement.

Protocol A protocol is the defined set of
rules, algori​thms, messages,
and other mechanisms that the
software and hardware must
follow to commun​icate effect​‐
ively.

Nodes Nodes are the connecting
hardware on the network

By ununited
cheatography.com/ununited/

Not published yet.
Last updated 19th August, 2023.
Page 4 of 26.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/ununited/
http://www.cheatography.com/ununited/cheat-sheets/comp-2131
http://www.cheatography.com/ununited/
https://readable.com

COMP 2131 Cheat Sheet
by ununited via cheatography.com/190700/cs/39675/

Module 3 A

Elements of a C program

A C develo​‐
pment
envionment
includes

Systen libraries and headers;
a set of standard libraries
and their header files. For
example see /usr / include
and glibc.

 Applic​ation Source: applic​‐
ation. source and header
files.

 Compiler: converts source to
object code for a specific
function.

 Linker: Resolves external
references and produces the
executable module.

Why C? Most system programs are
written in C, not even C++,
for fast execution. The
kernels of most operating
systems are written in C. A
lot of projects use C

GNU C
Compiler

GCC is GNU compiler collec​‐
tion. It is an integrated distri​‐
bution of compilers for
several major progra​mming
languages like C, C++, Java,
Object​ive-C, Objective C++
etc...

 GCC also known as GNU
Compiler is used for
compiling C programs

Some
features of
GCC are:

language indepe​ndence-
possib​ility of sharing code
among the compilers for all
supported languages.

Module 3 A (cont)

 code optimi​zation - Various
optimi​zation levels that may
generate machine code for
various proces​sors.

How to
compile

gcc hello.c -o hello

How to
run

./a.out

Source and Header Files

Header
Files

(*h) Header files in C are
templates that include function
prototypes and defini​tions of
variables, types, and macros.
By including these files in your
code, you're effect​ively
enabling code reusab​ility and
modula​riz​ation, making your
code cleaner and easier to
manage.

 Do not place source code (i.e.
defini​tions) in the header file
with a few except​ions: inline'd
code, class defini​tions and
const defini​tions

Standard
Headers
you
should
know

stdio.h : file and console

 stdlib.h: common utility
functions: malloc, calloc etc..

 string.h: string and byte
manipu​lation: strlen, strcpy
etc...

Malloc This is a function in C that
reserves a specified amount of
memory during runtime and
returns a pointer to the
beginning of the allocated
block.

Module 3 A (cont)

Calloc Similar to malloc, calloc also
reserves a certain amount of
memory during runtime but in
addition, it initia​lizes all the
reserved memory to zero and
returns a pointer to the start of
it.

The
Prepro​‐
cessor

The prepro​cessor in C is a
program that processes your
code before it's compiled. It
can include header files, define
macros, condit​ionally compile
sections of code, and handle
other tasks that occur before
actual code compil​ation.

C Prepro​‐
cessor
(cpp)

is used to insert common
defini​tions into source files

 Commands begin with a #.
#defin​e(d​efine a macros)
#inclu​de(​insert text from file).

C
language

program file names end with
".c"

Primitive
Data
Types

char, int, short, long, float,
double

Format
Specifiers

%d: print as a decimal integer;
%6d print as decimal int, at
least 6 char wide; %6.2 print as
floating point, at least 6 char
wide and 2 after decimal.

 %o: ocatal; %x: hexa; %c:
char; %s:str​ing;%%: % itself

Precedence and Associ​ativity

By ununited
cheatography.com/ununited/

Not published yet.
Last updated 19th August, 2023.
Page 5 of 26.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/ununited/
http://www.cheatography.com/ununited/cheat-sheets/comp-2131
http://www.cheatography.com/ununited/
https://readable.com

COMP 2131 Cheat Sheet
by ununited via cheatography.com/190700/cs/39675/

Module 3 A (cont)

++ -- Binary operators -- Highest

+ - Unary operators (negative,
positive)

* / % Math symbols

+ - Math symbols -- lowest

Symbols Presce​dence

! HIGHEST

>>=​<<=

== !=

&&

|| LOWEST

Comma
operator

lowest precedence of all the
operators, causes a sequence
of operations "do this, then
this"

Condit​‐
ional
operator

if-the​n-else. Exp1 ? Exp2:
Exp3

Expression
vs
Statement

An expression in C is any
valid combin​ation of
operators, constants,
functions and variables. A
statement is a valid
expression followed by a semi
colon;

Arrays Collection of similar data
items identified by a single
name and stored in
contiguous memory location

2D Arrays type array_​nam​e[r​ow-​siz​e][​‐
col​umn​-size]

 int a [3][4] = {{0,1,2,3},
{4,5,6,7}, {8,9,1​0,11}; or int
a[3][4​]={​0,1​,2,​3,4​,5,​6,7​,8,​9,1​‐
0,11}

Module 3 A (cont)

String is
a
character
array

sequence of characters in a
character array that is
terminated by null character '\0'

 C language does not support
strings as a data type

 String is just a one-di​men​‐
sional array of characters

 char name[10] = "​Example
Progra​m"; or char name[10] =
{'L','​e',​'s'​,'s​','​o',​'n'​,'s​','\0'}

 The length of the string is the
number of bytes preceding the
null character. The value of a
string is the sequence of the
values of the contained
charac​ters, in order.

 Series of characters treated as
a single unit. String literal
(string constant) = written in
double quotes "​hel​lo";

Functions Same as a method in Java

 return​-type functi​on-​nam​e(a​‐
rgument declar​ati​ons). Various
parts may be absent

 Each function logically, should
perform a specific task

Module 3 A (cont)

Parameter
passing

Call by Value: In C, when you
pass values to a function, a
new copy of those values is
created for the function to use.
Changes made to these
values in the function do not
affect the originals.

 Call by Reference: This
method passes the address of
the variable to the function.
Hence, any changes made to
the variables in the function
directly alter the original
variables as they share the
same memory location. Note
that C doesn't directly support
call by reference, but it can be
simulated using pointers.

External
Variables

Declared outside any function,
usually with initial values

 permanent so they can retain
values from one function
invocation to the next.

Automatic
(Local)
Variables

Are internal to the function;
they come into existence
when the function is entered
and disappear when it is left.

By ununited
cheatography.com/ununited/

Not published yet.
Last updated 19th August, 2023.
Page 6 of 26.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/ununited/
http://www.cheatography.com/ununited/cheat-sheets/comp-2131
http://www.cheatography.com/ununited/
https://readable.com

COMP 2131 Cheat Sheet
by ununited via cheatography.com/190700/cs/39675/

Module 3 A (cont)

Static
Variables

Static variables in C are
variables that retain their values
between function calls. Unlike
regular local variables, which
are created and destroyed
every time a function is called,
static variables are initia​lized
only once and exist until the
program ends. User how is that
different than an external
varaible? External variables, or
global variables, are declared
outside any function and can be
accessed by any function
throughout the program. Unlike
static variables, which are only
visible within their own function
or file, external variables are
visible to all parts of the
program, making them more
univer​sally accessible but also
potent​ially increasing the risk of
unintended modifi​cat​ions.

Register
Variables

A register declar​ation advises
the compiler that the variable in
question will be heavily used.
The idea is to keep them in
registers which is much quicker
to access

Scope Rules

Module 2

Binary
Number
System

Base 2

 4 bits = nibble 8 bits = byte

Octal
Number

Base 8

Hexade​‐
cimal
System

Base 16

Decimal to
Binary

divide the number by the
base (=2). take the remainder
(either 0 or 1) as a coeffi​cient.
Take the quotient and repeat
the division.

 Ex. 13/2 = 6 (quoti​ent), 1
(remai​nder)

 6/2 = 3 (quoti​ent), 0
remainder

 3/2 = 1 (quoti​ent), 1 (remai​‐
nder)

 1/2 = 0 (quoti​ent), 1 (remai​‐
nder)

 13 = 1101 - remainders read
from the bottom up.

Data
Repres​ent​‐
ation in
Words

A word size is the number of
bits processed by the
computer in one go ie.
typically 32 bits or 64 bits.

 Data bus size, instru​ction
size, address size are usually
multiples of the word size.

Addressing
and Byte
Ordering

A variable X of type int
(allocated 4 bytes)

 If the address of x: 0x100
(means it starts storing from
0x100)

Module 2 (cont)

 This means the 4 bytes of x would
be stored in memory locations
0x100, 0x101, 0x102, and 0x103.

 Lets assume x has the VALUE of
0x1234567, which needs to be
stored in four bytes:

 Two conven​tions to store the
values in the 4 consec​utive byte
memory locations. 0x01, 0x23,
0x45, and 0x67, or 0x67, 0x45,
0x23, and 0x01, depending on the
CPU archit​ecture

Little
Endian

0x01, 0x23, 0x45, 0x67. Little first
Refers to the byte order in which
the least signif​icant byte (LSB) is
stored at the lowest memory
address, and the most signif​icant
byte (MSB) is stored at the
highest memory address.

Big
Endian

0x67, 0x45, 0x23, 0x01 Big first
Refers to Refers to the byte order
in which the most signif​icant byte
(MSB) is stored at the lowest
memory address, and the least
signif​icant byte (LSB) is stored at
the highest memory address.

By ununited
cheatography.com/ununited/

Not published yet.
Last updated 19th August, 2023.
Page 7 of 26.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/ununited/
http://www.cheatography.com/ununited/cheat-sheets/comp-2131
http://www.cheatography.com/ununited/
https://readable.com

COMP 2131 Cheat Sheet
by ununited via cheatography.com/190700/cs/39675/

Module 2 (cont)

Integer Repres​ent​ation

char, unsigned
char

1 byte

Short, unsigned
short

2 bytes

Int, unsigned int 4 bytes

Long, unsigned
long

8 bytes

float 4 bytes

double 8 bytes

 max number able to
store is bit size / 4

Unsigned All 8 bits used for data
storage, nos sign bit

unsigned char Smallest number is 0,
max number is 0xff

unsigned short 16 bits, smallest number
is 0, max number is 0xffff
- 65536 in decimal

unsigned int 32 bits, smallest number
is 0. max number is
0xffffffff

 The ma number is 2^8 =
255, the min number is 0

unsigned long 64 bits, smallest number
is 0, largest number is
0xffff​fff​fff​ffffff.

Binary Addition

1 + 1 = 0 carry the 1

0 + 1 = 1

Binary Subtra​ction

1 -1 = 0

0 - 1 borrow a base when
needed

Binary Multip​lic​‐
ation

bit by bit

Repres​ent​ation
of Negative
Binaries in
Memory

Left bit is called the most
signif​icant bit

Module 2 (cont)

 MSB = 0, non-ne​gative
integers, MSB = 1, negative
integers

 Other 7 bits (for an int, 8
bits) is used to represent the
integers

8 bit signed
repres​ent​‐
ation

Largest number is 127

 Smallest number is -128

2's
Complement

Positive numbers and zero
are repres​ented as usual in
binary. Negative numbers
are repres​ented by inverting
all the bits of their positive
counte​rpart and adding 1 to
the result.

 This system allows simple
binary addition to work for
both positive and negative
operands without needing
separate subtra​ction
hardware. The leftmost bit
often acts as a sign bit, with
0 for non-ne​gative values
and 1 for negative values.

Fractional
Number
Repres​ent​‐
ation

IEEE floating point repres​‐
ent​ation

 Floating point is typically
expressed in the scientific
notation, with a fraction (F)
and an exponent (E) of a
certain radix (r), in the form
of F x r ^ E

0.1 = 2^-1 = 0.5

Module 2 (cont)

0.01 = 2^-2 = 0.25

0.001 =2 ^ -3 = 0.125

Floats are
stored in
memory as
follows

sign bit 's' = denoting positive
or negative - 1 bit

 mantissa 'm' = the digits of
your number - 23 bits

 exponent 'e' = 8 bits

Three different cases

Normalized
values

The bit pattern of exp is
neither all zeros nor all ones

Denorm​‐
alized
values

It is the case where the exp is
all 0's but the fraction is non-
zero.

 The denorm​alized numbers
gradually lose their precision
as they get smaller because
the left bits of the fraction
become zeros

By ununited
cheatography.com/ununited/

Not published yet.
Last updated 19th August, 2023.
Page 8 of 26.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/ununited/
http://www.cheatography.com/ununited/cheat-sheets/comp-2131
http://www.cheatography.com/ununited/
https://readable.com

COMP 2131 Cheat Sheet
by ununited via cheatography.com/190700/cs/39675/

Module 2 (cont)

Special
values

A final category of values
occurs when the exponent
field is all ones. When the
fraction field is all zeros, the
resulting values represent
infinity, either +∞ when s = 0,
or −∞ when s = 1. Infinity can
represent results that
overflow, as when we multiply
two very large numbers, or
when we divide by zero.
When the fraction field is
nonzero, the resulting value is
called a “NaN,” short for “Not
a Number.”

ASCII
Character
codes

Used to represent inform​ation
sent as character based data

 uses 7 bits to represent 94
graphic printing characters 34
non printing characters

Boolean
Expression

Any expression that evaluates
to true or false.

Boolean
Operators

AND(.), OR(+), NOT(!)

Module 3

Scope Rules

There are three
places where
variables can be
declared in C

Inside a function or
a block which is
called local
variables

 Outside of all
functions which is
called global
variables

Module 3 (cont)

 In the definition of function
parameters which is called
formal parameters

Pointers Pointers in C are like arrows that
point to a location in your
computer's memory where data
is stored. Instead of holding a
value themse​lves, they tell you
where to find the value.

 variable that contains the
address of another variable

Module 3 (cont)

 Pointers and arrays in C are
closely related because
arrays are essent​ially a block
of contiguous memory
locations. The name of the
array is a pointer to the first
element of the array. So, if
you have an array like int
arr[5], you can access its
elements using pointers. For
example, *(arr + 2) will give
you the third element of the
array, because the pointer
arr points to the start of the
array and adding 2 moves
the pointer to the third
element. This relation gives
you another way to access
and manipulate arrays,
making the use of arrays
more flexible in C.

Pointer
declar​ation

int *ptr; Declares a variable
ptr that is a pointer to a data
item that is an integer

Assignment
to a pointer

ptr = &x; Assigns ptr to point
to the address where x is
stored.

To use the
value
pointed to
by a
pointer we
use derefe​‐
rence (*)

Given a pointer, we can get
the value it points to by using
the * operator

By ununited
cheatography.com/ununited/

Not published yet.
Last updated 19th August, 2023.
Page 9 of 26.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/ununited/
http://www.cheatography.com/ununited/cheat-sheets/comp-2131
http://www.cheatography.com/ununited/
https://readable.com

COMP 2131 Cheat Sheet
by ununited via cheatography.com/190700/cs/39675/

Module 3 (cont)

 *ptr is the value at the memory
address given by the value of
ptr

 Ex. if ptr = &x then y = *ptr + 1
is the same as y = x +1

 If ptr = &y then y = *ptr + 1 is
the same as y = y + 1

Structures A way to have a single name
referring to a group of related
values.

 Structures provide a way of
storing many different values
in variables of potent​ially
different types under the same
name.

 Structs are useful when a lot of
data needs to be grouped
together,

Module 4

Types
of
memory

Primary memory: most part of
memory clears out everytime a
computer is restarted. This is
also called temporary memory or
volatile memory except ROM.
Ex. RAM, ROM and Cache

 Secondary Memory: Data stored
on this memory is permanent
and retains even after computer
is switched off. Ex. Harddisk,
CD, USB

Primary Memeory

Module 4 (cont)

RAM Random Access Memory: is
the most common and
accessible memory by the
processor to process the data.
This is tradit​ionally packaged
as a chip. Basic storage unit is
normally a cell. Multiple RAM
chips may be there on the
computer board to form a
memory.

Dynamic
Ram
(DRAM)

More commonly used in
memory here each cell stores
a bit wit ha capacitor. One
transistor is used for accessing
the data. Here values must be
refreshed every 10-100ms to
retain. Slower and cheaper
than SRAM but is used as a
simple scratch area for
different data manipu​lat​ions.

Static
Ram
(SRAM)

each cell stored a bit with four
or six-tr​ans​istor circuit. It may
retain values indefi​nitely, as
long as it is kept powered. This
memory is faster and more
expensive than DRAM and
used as Cache memory.

Enhanced DRAM

Synchr​‐
onous
DRAM
(SDRAM)

this uses a conven​tional clock
signal instead of asynch​ronous
control

Module 4 (cont)

Double
Data-
Rate
Synchr​‐
onous
DRAM
(DDR
SDRAM)

Double edge clocking to send
two bits per cycle per pin.
Different types are there that
are distin​guished by size of
small prefetch buffer like DDR(2
bits), DDR2(4 bits), DDR4(8
bits)

ROM Read only memory: it isprog​‐
rammed during production and
can only be programmed once.
There is special erasable
PROM (EPROM) that can be
bulk erased using electrical
signals or UV or x-rays. A
normal user cannot alter this
memory. Main use is to store
firmware programs life BIOS,
contro​llers for disks, network
cards, graphics accele​rators,
security subsystems etc...

By ununited
cheatography.com/ununited/

Not published yet.
Last updated 19th August, 2023.
Page 10 of 26.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/ununited/
http://www.cheatography.com/ununited/cheat-sheets/comp-2131
http://www.cheatography.com/ununited/
https://readable.com

COMP 2131 Cheat Sheet
by ununited via cheatography.com/190700/cs/39675/

Module 4 (cont)

Cache
Memory

There is a problem of processor
- memory bottle​neck. If the
processor is running at the same
speed as the memory bus, both
work fine, but since newer
computers have high speed
CPU's, the CPU will have to wait
for inform​ation from the memory.
Cache stores the info coming
from memory and the processor
can get the info from the cache
must faster. Small fast storage
device that acts as a staging
area for a subset of the data from
the larger, slower device like
RAM. Can be multiple levels of
cache L1, L2

 Cache Hit: When the ALU needs
some data it looks for the data in
the cache. If found, it is called a
cache hit, else a cache miss

Cost of
cache
miss

Consider: Cache hit time of 1
cycle. Miss penalty of 100
cycles.

 97% hits: 1 cycle + 0.03 * 100
cycles = 4 cycles

 99% hits: 1 cycle + 0.01 * 100
cycles = 2 cycles

Module 4 (cont)

Miss Rate Miss rate is the fraction of
memory references that are
not found in cache. (Misses /
Accesses) = 1 hit rate. Typical
hit percen​tages (3% to 10%
for L1)

Hit Time Hit time is the time to deliver a
line in the cache to the
processor. It also includes
time to determine whether the
line is in the cache. Typical hit
times: 1-2 clock cycles for L1

Miss
Penalty

Miss penalty is the additional
time required because of a
miss is typically 50 - 200
cycles.

Secondary
Memory

This is the non-vo​latile part of
the memory used for storing
data for long term storage.
Ex. Floppy, hard disk, usb

Hard Disk
(HDD)

Most important and most
commonly used secondary
storage medium. This is
mostly installed inside the
CPU, but may also be an
external hard disk that can be
portable if required

Module 4 (cont)

 A hard disk consists of platters,
each with two surfaces. Each
surface consists of concentric
rings called tracks. Each track
consists of sectors separated
by gaps. A sector is the block
that is addressed to store a
block of inform​ation.

Steps for
disk
access

The reading head is positioned
above a track

 Counter clockwise rotation of
the disk happens until it
reaches the requireds ector

 Reads the data, once reached

Calculate
Disk
Capacity

We may measure the disk
capacity using the following
technology factors:

 Recording density (bits/in):
number of bits that can be
stored into a 1 inch segment of
track

 Track Density (tacks​/in​):the
number of tracks that can be
squeezed into a 1 inch
segment of the radius
extending from the centre of
the platter.

 Aerial Density (bits/​in2):
product of the recording density
and track density

By ununited
cheatography.com/ununited/

Not published yet.
Last updated 19th August, 2023.
Page 11 of 26.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/ununited/
http://www.cheatography.com/ununited/cheat-sheets/comp-2131
http://www.cheatography.com/ununited/
https://readable.com

COMP 2131 Cheat Sheet
by ununited via cheatography.com/190700/cs/39675/

Module 4 (cont)

Disk
Capacity
Calcul​‐
ation

Capacity = (#byte​s/s​ector) x
(avg.# sector​s/t​rack) x (#trac​‐
ks/​sur​face) x (#surf​ace​s/p​latter)
x (#plat​ter​s/disk)

Disk Access Time Calcul​ations

Average
Time

Taccess = Tavg seek + Tavg
rotation + Tavg transfer

Seek
Time
(Tavg
seek):

Time to position heads over
cylinder containing target
sector. Typical avg seek is: 2-
9ms

Rotaional
Latency
(Tavg
rotation)

Time wasted for first bit of
target sector to pass under r/w
head. Tavg rotation = 1/2 x
1/RPMs x 60sec/1min . Typical
is 720RPMs

Transfer
Time
(Tavg
transfer)

Time to read the bits in the
target sector. Tavg transfer =
1/(avg # sector​s/t​rack) x 1/RPM
x 60secs / 1min

Solid
State
Disks
(SSDs)

Device that uses integrated
circuits to store data perman​‐
ently. Since SSDs do not have
mechanical compon​ents, these
are typically more resistant to
physical shock, run silently,
have lower access time, and
lower latency. More expensive

Module 4 (cont)

Principle
of
Locality

Programs tend to use data and
instru​ctions with addresses
near or equal to those they
have used recently. Two main
localities are Spacial and
Temporal

Spacial Items near by addresses tend
to be referenced close together
in time

Temporal Recently referenced items are
likely to be references in the
near future

Module 5

Linking you can think of a linker as a
person assembling a train set.
Each car of the train is a piece of
compiled code, and the linker's
job is to connect these cars
together in the correct order to
form a complete train (the final
executable program). If one car
needs to connect to another in a
specific way (such as a function
in one piece of code calling
another function in another
piece), the linker ensures they're
hooked together properly, so the
entire train runs smoothly. The
final result is a complete, operat​‐
ional program that's ready to run
on your computer. A process of
collecting and combining various
pieces of code and data into a
single file that can be loaded into
the memory and executed.
Linking can be done at compile
time, or run time.

Module 5 (cont)

Role of
Linkers

Symbol Resolu​tion: Symbol
defini​tions are stored (by
compiler) in symbol table, an
array of structs, in the .o files.
Each entry includes name, size,
and relative location of symbol.
A linker associates each symbol
reference with exactly one
symbol defini​tion. Symbols will
be replaced with their relative
locations in the .o files.

 Relocation A linker merges
separate code and data sections
in the .o files into single sections
in the a.out file and relocates
symbols from their relative
locations in the .o files to their
final absolute memory locations
in the execut​able. A linker also
updates all references to these
symbols to reflect their new
positi​ons.:

Why do
we use
Linkers?

Programs can be written as a
collection of smaller source files,
rather than one monolithic mass
and can build libraries of
common funcitons

By ununited
cheatography.com/ununited/

Not published yet.
Last updated 19th August, 2023.
Page 12 of 26.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/ununited/
http://www.cheatography.com/ununited/cheat-sheets/comp-2131
http://www.cheatography.com/ununited/
https://readable.com

COMP 2131 Cheat Sheet
by ununited via cheatography.com/190700/cs/39675/

Module 5 (cont)

 Efficiency is Implem​ented in two ways: 1.
Time Efficiency - a separate compil​ation
enables changes to one source file,
compile, and then relink, therefore there is
no need to recompile other source files
again and again

 2. Space effici​ency: libraries, which are
common functions that are aggregated into
a single file, yet are still executable files
and running memory images, contains only
code for the functions they actually use

Module 5 (cont)

Compiler
Drivers

think of the compiler driver as
the conductor of an orchestra.
The musicians in the orchestra
each play their instru​ments, just
as different parts of the compil​‐
ation process (prepr​oce​ssing,
compiling, assemb​ling, linking)
handle specific tasks. The
conductor coordi​nates all the
musicians to create a
harmonious piece of music, just
as the compiler driver coordi​‐
nates the various stages of the
compil​ation process to produce
a working execut​able. It makes
sure everything happens in the
right order and that all the
necessary pieces come
together, simpli​fying the
complex process into a single,
unified command. A compiler
driver invokes the language pre
processor, compiler, assembler,
and linker as needed on behalf
of the user. The name of the
compiler driver on our Linux
box is gcc

Module 5 (cont)

Process In modular progra​mming many
method​s/p​roc​edures are
stored in a separate file. the file
is called from the main
program to call the methods
defined in the external file.

The
steps of
execution
are:

1. The driver first runs the C
prepro​cessor (cpp), which
translates the C source file
main.c into an ASCII interm​‐
ediate file main.i

 2. Next, the driver runs the C
compiler (cc1), which
translates main.i into ASCII
assembly language file main.s

 3. then the driver runs the
assembler (as), which
translates main.s into a reloca​‐
table object file main.o

 4. The driver goes through the
same process to generate
swap.o. Finally it runs the linker
program (ld), which combines
main.o and swap.o, along with
the necessary system object
files, to create the executable
object file.

By ununited
cheatography.com/ununited/

Not published yet.
Last updated 19th August, 2023.
Page 13 of 26.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/ununited/
http://www.cheatography.com/ununited/cheat-sheets/comp-2131
http://www.cheatography.com/ununited/
https://readable.com

COMP 2131 Cheat Sheet
by ununited via cheatography.com/190700/cs/39675/

Module 5 (cont)

Primary
Memory
Addressing

The primary memory of the
computer is used as
contiguous array of physical
addresses. It has two parts:
1. Low Memory Area: stores
resident operating system. 2.
High Memory Area: user
processes

Virtual
Memory

virtual memory enables a
computer to use more
memory than it physically has
by "​bor​row​ing​" space from
the hard drive. When the
actual RAM gets full, less-
used data is tempor​arily
stored on the hard drive,
making room for new data in
the physical RAM. This
process allows larger and
more complex applic​ations to
run smoothly, even on
systems with limited physical
memory.

Module 5 (cont)

Memory
Relocation
Concept

memory relocation is like
rearra​nging the contents of a
bookshelf. If you need to
make room for more books or
organize them differ​ently, you
might shift some of the books
to different spots on the shelf.
Similarly, memory relocation
moves data and code to
different parts of the
computer's memory to make
more efficient use of space or
to allow programs to run
correctly, even if they weren't
originally designed to be
placed in those exact spots in
memory.

Address
Space

Address space is a set of
addresses that a process can
use to address memory. Each
process has been given a
unique address space that
can be identified with base
register and limit register
combin​ation. The data is
moved between the process
address space (Virtual space)
and actual physical address
for proces​sing. This is called
as swapping

Module 5 (cont)

Swapping Swapping is like moving books
between a small reading table
(RAM) and large booksh​elves
(hard drive). If your table is full
and you need a new book
that's on the shelf, you'll put
one book from the table back
onto the shelf and take the new
book you need. In a computer,
when RAM is full and a new
program or data needs to be
loaded, the operating system
puts some of the data or
programs that are in RAM but
not currently being used onto
the hard drive, making space
for the new inform​ation. This
keeps the system running
smoothly, even when working
with more data than can fit in
RAM at one time.

By ununited
cheatography.com/ununited/

Not published yet.
Last updated 19th August, 2023.
Page 14 of 26.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/ununited/
http://www.cheatography.com/ununited/cheat-sheets/comp-2131
http://www.cheatography.com/ununited/
https://readable.com

COMP 2131 Cheat Sheet
by ununited via cheatography.com/190700/cs/39675/

Module 5 (cont)

Linker think of the linker as a puzzle
master putting together a jigsaw
puzzle. Each object file is like a
section of the puzzle, and the
linker's job is to fit them together
in the correct way to form the
complete picture (the executable
program). If one piece refers to
another (such as calling a
function defined somewhere
else), the linker makes sure
they're connected properly, so the
whole image makes sense. The
final result is a complete program
that's ready to run on your
computer.

Static
Linking

Symbol Resolu​tion: Object files
define and reference symbols.
The purpose of symbol resolution
is to associate each symbol
reference with exactly one symbol
definition

Module 5 (cont)

 Reloca​tion: Compilers and assemblers
generate code and data sections that start
at address 0. The linker relocates these
sections by associ​ating a memory location
with each symbol defini​tion, and then
modifying all of the references to those
symbols so that they point to this memory
location.

Module 5 (cont)

Dynamic
Linking

think of dynamic linking like a
toy set with interc​han​geable
parts. When you're playing with
the toy, you might want to add
special features or access​ories,
like wheels or wings. Instead of
storing all these parts inside the
main toy (which would make it
big and heavy), you keep them
in a separate box and snap
them on as needed. In a
computer, a dynami​cally linked
program works the same way. It
stays small and lightw​eight
because it doesn't include
everything inside itself. Instead,
it reaches out and grabs the
extra parts (like functions or
variables) from shared libraries
when it needs them, keeping
things more efficient and
flexible.

Types of Object Files

By ununited
cheatography.com/ununited/

Not published yet.
Last updated 19th August, 2023.
Page 15 of 26.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/ununited/
http://www.cheatography.com/ununited/cheat-sheets/comp-2131
http://www.cheatography.com/ununited/
https://readable.com

COMP 2131 Cheat Sheet
by ununited via cheatography.com/190700/cs/39675/

Module 5 (cont)

 Reloca​table Object files (.o): Think of this
as a puzzle piece that hasn't been fixed to
the final picture yet. It contains compiled
code, but it has references (like function
calls) that aren't tied down to specific
addresses. This allows the linker to move it
around and fit it with other pieces when
creating the final execut​able. It's a flexible,
interm​ediate step in building a program.

 Executable Object File (a.out): This is like
the completed puzzle, with all pieces fixed
in place, forming a clear picture. An
executable object file contains all the code,
data, and references properly linked and
ready to run on a computer. Everything is
set, and it's ready to be launched and
executed by the operating system.

Module 5 (cont)

 Shared Object File (.so): Imagine a special
puzzle piece that can fit into multiple
puzzles. A shared object file contains code
or data that multiple programs can use
simult​ane​ously. Instead of including the
same code in every program (which would
take up more space), the code is stored in
one place, and different programs can
reach into it and use what they need. It's a
way to share common functions or
variables between different programs,
making things more efficient.

 Compilers and assemblers generate object
files (including shared object files). Linkers
generate executable object files.

Inform​ation in Object File

 Header Inform​ation: info about the file such
as the size of the code, name of the source
file it was translated from, and creation
date.

 Object Code: Binary instru​ctions and data
generated by a compiler or assembler

Module 5 (cont)

 Reloca​tion: A list of the places in the object
code that have to fixed up when the linker
changes the addresses of the object code

 Symbol​s:G​lobal symbols defined in this
module, symbols to be imported from other
modules or defined by the linker.

 Debugging Inform​ation: Other inform​ation
about the object code not needed for
linking but of use to a debugger. This
includes source file and line number
inform​ation, local symbols, descri​ptions of
data structures used by the object code
such as C structure defini​tions.

By ununited
cheatography.com/ununited/

Not published yet.
Last updated 19th August, 2023.
Page 16 of 26.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/ununited/
http://www.cheatography.com/ununited/cheat-sheets/comp-2131
http://www.cheatography.com/ununited/
https://readable.com

COMP 2131 Cheat Sheet
by ununited via cheatography.com/190700/cs/39675/

Module 5 (cont)

Executable
and
Linkable
Format
(ELF)

think of ELF as a standa​‐
rdized container used for
shipping various goods.
Different containers might be
used for different types of
goods, but this particular
container (ELF) is designed in
such a way that it can effici​‐
ently pack away different
types of progra​mming "​goo​‐
ds,​" like the actual programs
you run (execu​tab​les), the
building blocks used to create
those programs (object code),
or the shared pieces used by
many programs (shared librar​‐
ies). By having this standa​‐
rdized container, the system
knows exactly how to handle,
load, and run these various
compon​ents, regardless of
what's inside. Just as
shipping containers have
specific ways they can be
lifted, stacked, and transp​‐
orted, ELF files have a
specific structure that the
operating system unders​‐
tands, allowing it to handle
them in a consistent and
efficient way.

Module 5 (cont)

ELF
Header

Inform​ation to parse and
interpret the object file; Word
size, byte ordering, file type(.o,
exec, .so) machine type, etc.

Segment
Header
table

For runtime execution: Page
size, virtual addresses memory
segments (secti​ons), segment
sizes.

 .text section: Instru​ction code

 .rodata section: Read only data:
jump tables, ...

 .data section: Initia​lized global
variables

 .bss section: Uninit​ialized global
variables; it has a section
header but occupies no space

 .symtab section: Symbol table;
Procedure and static variable
names; Section names and
locations are used by a linker
for code relocation

 .rel.text section: Is the
relocation info for .text section,
which addresses instru​ctions
that will need to be modified in
the execut​able; Also instru​‐
ctions for modifying.

Module 5 (cont)

 .rel.data section: Is the relocation info for
.data section; it also addresses of pointer
data that will need to be modified in the
merged executable

 .debug section: Info for symbolic
debugging (gcc -g); Section header table
used for linking and reloca​tion: Offsets and
sizes of each section

Types of ELF Files

 Reloca​table: files are created by compilers
and assemblers but need to be processed
by the linker before running

 Execut​able: files have all relocation done
and all symbols resolved except perhaps
shared library symbols to be resolved at
runtime

 Shared Object: are shared libraries,
containing both symbol inform​ation for the
linker and directly runnable code for
runtime

Symbols and Symbol Tables

By ununited
cheatography.com/ununited/

Not published yet.
Last updated 19th August, 2023.
Page 17 of 26.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/ununited/
http://www.cheatography.com/ununited/cheat-sheets/comp-2131
http://www.cheatography.com/ununited/
https://readable.com

COMP 2131 Cheat Sheet
by ununited via cheatography.com/190700/cs/39675/

Module 5 (cont)

 Global symbol: defined by
module m that can be referenced
by other modules. For example,
non-static C functions and non-
static global variables. (Note that
static C functions and static
global variables cannot be
referred from other files.)

 External symbols: Global symbols
that are referenced by module m
but defined by some other
module.

 Local symbols: Symbols defined
and referenced exclus​ively by
module m.

Strong and Weak Symbols

 Strong: procedures and initia​lized
globals

 Weak: uninit​ialized globals

Linkers
Symbol
Rules

Rule 1: Multiple strong symbols
are not allowed; each item can be
defined only once, otherwise the
result is a linker error

 Rule 2: Given a strong symbol
and multiple weak symbol,
choose the strong symbol.
References to the weak symbol
resolve to the strong symbol.

Module 5 (cont)

 Rule 3: If there are multiple
weak symbols, pick an
arbitrary one. This can be
overridden with gcc –fno-c​‐
ommon

Global
Variables;

Avoid global variables if
possible, otherwise use static
if possible; Initialize if you
define a global variable. Use
extern if you do use external
global variables.

Relocation Relocation consists of two
steps:

 Relocating sections and
symbol defini​tions

 Relocating symbol references
within sections

Types of Libraries

 Static Libraries: Concat​enate
related reloca​table object files
into a single file with an index
(called an archive). �
Enhance linker so that it tries
to resolve unresolved external
references by looking for the
symbols in one or more
archives. � If an archive
member file resolves
reference, link it into the
execut​able.

Module 5 (cont)

 Dynamic / Shared Libraries: Object files
that contain code and data that are loaded
and linked into an applic​ation dynami​cally,
at either load-time or run-time. � Also
called: dynamic link libraries, DLLs, .so
files � Shared library routines can be
shared by multiple processes. � In shared
libraries, the symbols for the code in
shared libraries will be resolved with
absolute addresses at either load-time or
run-time.

Module 7

Perfor​‐
mance
Realities

To write an efficient code, you
need to understand the basic
facts: a. Constant factors o It is
possible to improve the perfor​‐
mance of the code, if it is
properly written The optimi​zation
can be done in various ways:
Adopting an approp​riate
algorithm,  Selecting proper
data repres​ent​ations, 
Following procedures and loops
suitably and accurately

By ununited
cheatography.com/ununited/

Not published yet.
Last updated 19th August, 2023.
Page 18 of 26.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/ununited/
http://www.cheatography.com/ununited/cheat-sheets/comp-2131
http://www.cheatography.com/ununited/
https://readable.com

COMP 2131 Cheat Sheet
by ununited via cheatography.com/190700/cs/39675/

Module 7 (cont)

 The programmer must
understand following ways the
system to optimize perfor​‐
mance: a. The way programs
are compiled and executed. b.
The way to measure program
perfor​mance and identify
bottle​necks. c. The way to
improve perfor​mance without
destroying code modularity
and genera​lity.

Optimizing
Compilers

Compiler constr​uction has
always been an active
research topic. Compiler
developers have developed
very advanced and optimi​‐
zation compilers that can
automa​tically make the
optimized codes by:

 Making proper register
allocation � Automatic code
selection and ordering �
Performing dead code elimin​‐
ation automa​tically and �
Elimin​ating minor ineffi​cie​‐
ncies by itself

 Nevert​heless, many places
may not be optimized by
compilers: � Improving
asymptotic efficiency �
Selecting best overall
algorithm

Module 7 (cont)

 Compilers cannot overcome
“optim​ization blockers” (this
will be explained more fully
later): � Memory aliasing �
Procedure call side-e​ffects

Limita​‐
tions of
optimizing
compilers

The optimi​zation compilers
have numerous constr​aints; for
example, they cannot cause
any change in program
behaviour and cannot change
the algori​thmic style of the
progra​mmers

 The compilers can: a. Often
prevent it from making optimi​‐
zations when that would only
affect behaviour under pathol​‐
ogical condit​ions.

 Not change behaviour that
may be obvious to the
programmer but can be
obfuscated by languages and
coding styles like data ranges
may be more limited than
variable types suggest

Module 7 (cont)

 Since the analysis is performed
only within proced​ures, the
whole-​program analysis is too
expensive in most cases. Most
analysis is based only on static
inform​ation, as compilers cannot
anticipate run-time inputs. The
main rule is that when in doubt,
the compiler must be conser​‐
vative and cannot do anything.

Optimi​
zations
for
Progra​
mmers

Common optimi​zat​ions: � Take
the same repeated task out of the
loop (Code Motion) � Replace
mathem​atical operations with
bitwis​e/shift operations wherever
possib​le(​red​uction in strength) �
Share common sub-ex​pre​ssions
� Do not use functions as the
loop condition checker (Optim​‐
ization Blockers)

By ununited
cheatography.com/ununited/

Not published yet.
Last updated 19th August, 2023.
Page 19 of 26.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/ununited/
http://www.cheatography.com/ununited/cheat-sheets/comp-2131
http://www.cheatography.com/ununited/
https://readable.com

COMP 2131 Cheat Sheet
by ununited via cheatography.com/190700/cs/39675/

Module 7 (cont)

Code
Motion

First step is to reduce
frequency with which comput​‐
ations are performed, wherever
possible following the rule o it
should still produce same
result o moving comput​ation
code out of loop, that is
repeated (n*i �repeated)

Reduction
in
Strength

Replace costly operation with
simpler one. Shift operations
are easier as compared to
multiply and divide � Use Shift
operation instead of multiply or
divide 16*x --> x << 4 � Utility
machine dependent �
Depends on cost of multiply or
divide instru​ction o On Intel
Nehalem, integer multiply
requires 3 CPU cycles �
Recognize sequence of
products

Share
Common
Sub-ex​‐
pre​ssions

Reuse portions of expres​sions
and write them once Compilers
often not very sophis​ticated in
exploiting arithmetic properties

 To calculate : p = q r + m; x = q
r + n; It is always more
advisable to do: s=q * r; p = s +
m; x= s + n;

Module 7 (cont)

Optimi​‐
zation
Blocker
#1:
Procedure
Calls

Procedure calls is an excellent
concept of modularity but
requires careful attention. The
procedure call must not be
used for checking the condit​‐
ions: Please see lower1().
Here the issue is that strlen
executed every iteration

How this
works:

Strlen is the only way to
determine length of string as
scans the entire length,
looking for null character. �
Overall perfor​mance of the
program: o N calls to strlen o
Require times N, N-1, N-2, …,
1 o Overall O(N2) perfor​‐
mance

Improving
Perfor​‐
mance:

Take following steps to make
it better: � Move call to strlen
outside of loop as function
result does not change from
one iteration to another �
Make the rest of the loop
common Lower2() is the
improv​ement function in the
above figure

Module 7 (cont)

Procedure
Calls:
Optimi​‐
zation
blocker for
the
compiler

The optimi​zation compiler will
not be able move strlen out of
inner loop, as: � Procedure
may have side effects � May
alter global state each time
called � The function may not
return same value for given
arguments � May depends
on other parts of global state
� Procedure lower could
interact with strlen

The main
reasons
are:

Compiler treats procedure call
as a black box � Weakens
the optimi​zations near them

Remedies
for the
progra​‐
mmer:

Use of inline functions o GCC
does this with –O2 � Do your
own code motion as
discussed above

Optimi​‐
zation
Blocker
#2:
Memory
Aliasing

Aliasing is the method of
referring two different memory
references specifying single
location. This is very easy to
have happen in C as it allows
points and pointer arithm​etic.
This also supports direct
access to storage struct​ures.

By ununited
cheatography.com/ununited/

Not published yet.
Last updated 19th August, 2023.
Page 20 of 26.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/ununited/
http://www.cheatography.com/ununited/cheat-sheets/comp-2131
http://www.cheatography.com/ununited/
https://readable.com

COMP 2131 Cheat Sheet
by ununited via cheatography.com/190700/cs/39675/

Module 7 (cont)

 Remedy for the progra​mmer:
� Get in habit of introd​ucing
local variables o Accumu​lating
within loops o Your way of
telling compiler not to check
for aliasing

Removing
non
duplic​ating
data
processing

In the following example, code
updates b[i] on every iteration.
Therefore, we must consider
the possib​ility that these
updates will affect program
behaviour

Instru​cti​‐
on-​Level
Parall​‐
elism

Multiple data can process
simult​ane​ously. To
understand that, we need a
general unders​tanding of
modern processor design. As
with multi-core systems, the
CPU can execute multiple
instru​ctions in parallel. In this
case, perfor​mance will be
limited by data depend​encies.

Module 7 (cont)

 But here too, some simple
transf​orm​ations can have
dramatic perfor​mance improv​‐
ement. These are done by the
progra​mmers as compilers often
cannot make these transf​orm​‐
ations and because it is difficult
to understand the associ​ativity
and distri​butives in floati​ng-​point
arithm​etic.

Cycles
Per
Element
(CPE)

To see the impact of the optimi​‐
zation, we need to have a
defined metrics. The number of
cycles per element (CPE), is the
measure that assumes the run
time, measured in clock cycles,
for an array of length n is a
function of the form Cn + K
where Cn is the CPE.

 It is a convenient way to express
perfor​mance of program that
operates on vectors or lists:
Length = n In our case: CPE =
cycles per OP T = CPE*n +
Overhead CPE is slope of line

Module 7 (cont)

Supers​‐
calar
Processor

A supers​calar processor can
issue and execute multiple
instru​ctions in one cycle. The
instru​ctions are retrieved from
a sequential instru​ction stream
and are usually scheduled
dynami​cally.

 The benefit is that without
progra​mming effort, supers​‐
calar processor can take
advantage of the instru​ction
level parall​elism that most
programs have o Most CPUs
since about 1998 are supers​‐
calar. o Intel: since Pentium
Pro

Loop
unrolling

Another way of implem​enting
optimi​zation applied to loops.
This reduces the frequency of
branches and loop mainte​‐
nance instru​ctions. The
number of iterations is known
prior to execution of the loop.
Objective is to reduce the total
number of times loop runs

Effect of
Loop
Unrolling

Helps integer multiply below
latency bound � Compiler
does clever optimi​zation �
Others don’t improve as it still
has sequential dependency

By ununited
cheatography.com/ununited/

Not published yet.
Last updated 19th August, 2023.
Page 21 of 26.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/ununited/
http://www.cheatography.com/ununited/cheat-sheets/comp-2131
http://www.cheatography.com/ununited/
https://readable.com

COMP 2131 Cheat Sheet
by ununited via cheatography.com/190700/cs/39675/

Module 6

Phases of a
Program

User programs in C (code
time) [. C file]

 C Compiler (compile time)

 Assembler

 Hardware (run time) [execu​‐
table file]

The time
required to
execute a
program
depends on:

program structure (as
weitten in C, for instance)

 The compiler: Set of
assembler instru​ctions it
translates the C program
into

 The hardware implem​ent​‐
ation: Amount of time
required to execute an
instru​ction

 The instru​ction set archit​‐
ecture (ISA): Set of instru​‐
ctions it makes available to
the compiler

ISA Instru​‐
ction Set
Archit​ecture

ISA is used to define: The
systems state (eg. registers,
memory, program counter)

 The instru​ctions the CPU
can execute

 The effect that each of
these instru​ctions will have
on the system state

ISA is a protocol used to define
the way a computer is used
by the machine language
programmer or compiler

Module 6 (cont)

The ISA
describes
the
following

Memory model: how memory
is accessed and referenced

 instru​ction format, types and
modes - commands to be
executed

 operand registers, types, and
data addressing - data
storage and processing
locations

Assembly
Language

Assembly Language is an
Interm​ediate Language
between absolute Machine
code and High Level
Language

Advantages
include:

Machine code with a better
human unders​tan​ding, ease
to write and debug, the use
of mnemonics for instru​‐
ctions, and it reserves
memory location for data

 High Level Language writes
more effici​ent​/op​timized
programs

Need for
Assembly
Language

The ability to read and
understand assembly code is
an important skill

Module 6 (cont)

 We can understand the optimi​‐
zation capabi​lities of the
compiler and analyze the
underlying ineffi​cie​ncies in the
code, to understand the
function invocation mechan​‐
isms, and help ourselves
understand how computer
systems and operating
systems run programs

 The programs written in high
level languages usually does
not run as fast as assembly
language programs, so
whenever execution speed is
so critical, only assembly
language routines can be
useful.

 Knowledge of assembly
enables the programmer to
debug the higher level
language code

 Progra​mmers developing
compilers must know assembly
language

Assembly
Progra​‐
mmers
view of
the
System

Registers: fastest memory
alloca​tions that are nearest to
ALU for processing

 Memory: Part of primary
memory, where other data and
program code is stored

By ununited
cheatography.com/ununited/

Not published yet.
Last updated 19th August, 2023.
Page 22 of 26.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/ununited/
http://www.cheatography.com/ununited/cheat-sheets/comp-2131
http://www.cheatography.com/ununited/
https://readable.com

COMP 2131 Cheat Sheet
by ununited via cheatography.com/190700/cs/39675/

Module 6 (cont)

 Opcodes: The assembly
language commands that
process the data using the set
of registers

Registers are small memory areas that
are volatile and are used for all
memory manipu​lat​ions.

 There are 8 "​general purpos​e"
registers and 1 "​ins​tru​ction
pointe​r" that points to the next
instru​ction execute.

 Of the 8 registers, 6 are
commonly used and the
remaining two are rarely used.

EAX Main and most commonly used
register. Is is an accumu​lator
like register, where all calcul​‐
ations occur. All systems are
also called through the EAX
register. Used to store the value
returned from a function or as
an accumu​lator to add the
values

Module 6 (cont)

EBX A general purpose register, that
does not have a dedicated role. It is
used as a base pointer form
memory access and also used to
store extra pointer or calcul​ation
step. Base pointer to the data
section

ECX Counter register for loops and
strings. General purpose register
but mainly used as the count
register (for loops etc.). All the
counting instru​ctions use this
register. The register counts
downward rather than upwards.
This also holds the data to be written
on the port.

EDX I/O pointer. This is the data register,
that holds the size of the data.

ESI source indicator

EDI destin​ation indicator

ESP stack pointer

EBP stack frame base pointer (where the
stack starts for a specific function)

EIP pointer to the next instru​ction to
execute

Module 6 (cont)

EFLAGS
register

a single register that may
indicate different values through
its different bits

Zero
Flag
(ZF)

sets if the result of the instru​‐
ction is zero; cleared otherwise

Sign
Flag
(SF)

sets equal to the most signif​‐
icant bit of the result

Overflow
Flag
(OF)

indicates the overflow of a high-
order bit (leftmost bit) of data
after a signed arithmetic
operation.

Direction
Flag
(DF)

determines left or right direction
for moving comparing string
data. When the DF value is 0,
the string operation takes left-t​o-
right direction

Interrupt
Flag (IF)

determines whether the external
interrupts like keyboard entry,
etc, are to be ignored or
processed. It disables the
external interrupt when the
value is 0 and enables interrupt
when set to 1

By ununited
cheatography.com/ununited/

Not published yet.
Last updated 19th August, 2023.
Page 23 of 26.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/ununited/
http://www.cheatography.com/ununited/cheat-sheets/comp-2131
http://www.cheatography.com/ununited/
https://readable.com

COMP 2131 Cheat Sheet
by ununited via cheatography.com/190700/cs/39675/

Module 6 (cont)

Trap Flag
(TF)

allows setting the operation of
the processor in single​-step
mode. The DEBUG program
we used sets the trap flag, so
we could step through
execution one instru​ction at a
time.

Memory
Segments

Assembly follows the
segmented memory model,
which divides the system
memory into groups of indepe​‐
ndent segments referenced by
pointers located in he segment
registers

Data
Segment

repres​ented by .data section
and the .bss section and is
used to declare the memory
region, where data elements
are stored for the program.

 Code Segment: is repres​ented
by .text section. This defines
an area in memory that stores
the instru​ction codes. This is
also a fixed area. CS register
stores the starting address of
the code segment is is pointed
by CS(Code segment register)

Module 6 (cont)

 Stack: segment contains data
values passed to functions
and procedures within the
program. SSR (Stack
segment register stores the
starting address of the stack).
An extra segment is used to
store Extra data. It is pointed
by ES (Extra segment
register)

Op Codes also called Assembly
Language commands, or
mnemonic codes, are
different categories of
commands that makes the
assembly language syntax

Three main
catego​ries:

data transfer instru​ctions

 arithmetic instru​ctions

 logical and program control
instru​ctions

Assembly
Program
Structure

.data section: declare
variables

 .bss section: also declares
variables

 .text section: has program
codes

EAX 32 bit accumu​lator register

RAX 64 bit accumu​lator register

AX 16 bit accumu​lator register

Assembly
Language
Statements

[label​]mn​emo​nic​[op​era​nds​][;​‐
com​ment]

Instru​ctions

Module 6 (cont)

NOP does noting, no values, may
be used for a delay

PUSH push word, double word or
quad word on the stack, it
automa​tically decrements the
stack pointer esp, by 4

POP pops the data from the stack,
sets the esp automa​tic​ally, it
would increment esp

EQU sets a variable equal to some
memory

HLT to halt the program

Operation Suffixes

b byte (8 bit)

s short (16 bit int) or single (32
bit floating point)

w word (16 bit)

l long (32 bit integer or 64 bit
floating point)

q quad (64 bit)

t ten bytes (80-bit floating
point)

Addressing
Modes

Direct Memory Addres​sing(
register) : register eax has
the value 0x100

 Indirect Memory Addres​sing:
register contains the value

 Offset Addressing (register,
offset): register may calculate
the memory reference for
final data

By ununited
cheatography.com/ununited/

Not published yet.
Last updated 19th August, 2023.
Page 24 of 26.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/ununited/
http://www.cheatography.com/ununited/cheat-sheets/comp-2131
http://www.cheatography.com/ununited/
https://readable.com

COMP 2131 Cheat Sheet
by ununited via cheatography.com/190700/cs/39675/

Module 6 (cont)

 Offset Addressing (register,
offset): register may calculate
the memory reference for final
data

Memory Addressing

%eax refers to the value in register

(%eax) means use the value in register
as address to point to data at
that address

9(%eax,
%edx)

means use the address in
%eax+%​edx*9 and use the
value as addresss to refer to
the data at that location

Three
basic
kinds of
Instru​‐
ctions

Perform arithmetic function on
register or memory data

 Transfer data between memory
and regist​er.-​load data from
memory into regist​er.-​store data
into memory

 Transfer control - Uncond​itional
jumps to/from procedures -
condit​ional branches

MOV
instru​‐
ction

The syntax is: mov? Source,
destin​ation. movb = move byte;
movw = move word...

movl
$0x4050,
%eax

Immedi​ate​--R​egi​ster,4 bytes. :
in plain English, this instru​ction
means "move the 32-bit
constant value 0x4050 (or
16464 in decimal) into the
%eax regist​er."​

Module 6 (cont)

movw
%bp,
%sp

Regist​er-​-Re​gister, 2 bytes.
:copy the 16-bit value from the
base pointer register (%bp) into
the stack pointer register (%sp).

movb
(%edi,
%ecx),
%ah

Memory -- Register, 1byte. :So,
in plain English, this instru​ction
reads a byte from memory at the
address formed by adding the
values of the %edi and %ecx
registers and stores it in the
high byte of the %ax register,
which is %ah.

Load
Effective
Address
- leal

variant of the movl instru​ction. It
has the form of an instru​ction
that reads from memory to an
register, but it does not
reference memory at all. Its first
operand appears to be a
memory reference, but instead
of reading from the designated
location, the instru​ction copies
the effective address to the
destin​ation

Module 6

Control In addition to integer registers,
the CPU maintains a set of single-
bit condition code registers
describing attributes of the most
recent arithmetic or logical
operation. These registers can
then be tested to perform condit​‐
ional branches

Module 6 (cont)

CF Carry Flag: The most recent
operation generated a carry out
of the most signif​icant bit. Used
to detect overflow for unsigned
operations

ZF Zero Flag: The most recent
operation yielded zero

SF Sign Flag: The most recent
operation yielded a negative
value

OF Overflow Flag:The most recent
operation caused a two's
complement overflow either
negative of positive

Jump
Instru​‐
ctions
and their
Encoding

Under normal execution, instru​‐
ctions follow each other in the
order they are listed. A jump
instru​ction can cause the
execution to switch to a
completely new position in the
program. These jump destin​‐
ations are generally indicated
in assembly code by a label

jmp
*%eax

Uses the value in register
%eax as the jump target, and
the instru​ction

jmp *
(%eax)

reads the jump target from
memory, using the value in
%eax as the read address

By ununited
cheatography.com/ununited/

Not published yet.
Last updated 19th August, 2023.
Page 25 of 26.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/ununited/
http://www.cheatography.com/ununited/cheat-sheets/comp-2131
http://www.cheatography.com/ununited/
https://readable.com

COMP 2131 Cheat Sheet
by ununited via cheatography.com/190700/cs/39675/

Module 6 (cont)

Procedures
in
Assembly

A procedure call involves
passing both data (in the form
of procedure parameters and
return values) and control
from one part of a program to
another. � The data passing
happens using stack in the
memory, that is shared by
both main program and the
procedure � Within the
function, the need is to also
allocate space for the local
variables defined in the
procedure on entry and
deallocate them on exit. �
Most machines, including
IA32, provide only simple
instru​ctions for transf​erring
control to and from proced​‐
ures. � The part of the
program that is needed to be
done many times is defined in
the procedure � Each
procedure is identified by a
name � The procedure is
defined as a label but after
the execution of the
procedure, the execution
returns to the same place
from where it has been called
when ret (return) statement is
executed � The procedure
may flow along multiple
labels as well

Module 6 (cont)

Stack Stack plays an important role when
we use the procedures When a
program starts executing, a certain
contiguous section of memory is
set aside for the program called the
stack.

 The stack implem​ent​ation has
some special features, which are:
� The stack can only hold words
or double​words, not a byte. � The
stack grows in the reverse
direction, i.e., toward the lower
memory address � The top of the
stack points to the last item
inserted in the stack; it points to the
lower byte of the last word inserted.

 The stack pointer is the register
that contains the top of the stack
and base pointer is the register
having the address of the bottom of
the stack.

By ununited
cheatography.com/ununited/

Not published yet.
Last updated 19th August, 2023.
Page 26 of 26.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/ununited/
http://www.cheatography.com/ununited/cheat-sheets/comp-2131
http://www.cheatography.com/ununited/
https://readable.com

	COMP 2131 Cheat Sheet - Page 1
	Module 1
	Module 1

	COMP 2131 Cheat Sheet - Page 2
	Module 1
	Module 1

	COMP 2131 Cheat Sheet - Page 3
	Module 1

	COMP 2131 Cheat Sheet - Page 4
	Module 1

	COMP 2131 Cheat Sheet - Page 5
	Module 3 A

	COMP 2131 Cheat Sheet - Page 6
	COMP 2131 Cheat Sheet - Page 7
	Module 2

	COMP 2131 Cheat Sheet - Page 8
	COMP 2131 Cheat Sheet - Page 9
	Module 3

	COMP 2131 Cheat Sheet - Page 10
	Module 4

	COMP 2131 Cheat Sheet - Page 11
	COMP 2131 Cheat Sheet - Page 12
	Module 5

	COMP 2131 Cheat Sheet - Page 13
	COMP 2131 Cheat Sheet - Page 14
	COMP 2131 Cheat Sheet - Page 15
	COMP 2131 Cheat Sheet - Page 16
	COMP 2131 Cheat Sheet - Page 17
	COMP 2131 Cheat Sheet - Page 18
	Module 7

	COMP 2131 Cheat Sheet - Page 19
	COMP 2131 Cheat Sheet - Page 20
	COMP 2131 Cheat Sheet - Page 21
	COMP 2131 Cheat Sheet - Page 22
	Module 6

	COMP 2131 Cheat Sheet - Page 23
	COMP 2131 Cheat Sheet - Page 24
	COMP 2131 Cheat Sheet - Page 25
	Module 6

	COMP 2131 Cheat Sheet - Page 26

