\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{UmeshJagtap} \pdfinfo{ /Title (micrometry-technique.pdf) /Creator (Cheatography) /Author (UmeshJagtap) /Subject (Micrometry Technique Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{FF3B14} \definecolor{LightBackground}{HTML}{FFF2F0} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Micrometry Technique Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{UmeshJagtap} via \textcolor{DarkBackground}{\uline{cheatography.com/186232/cs/39996/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}UmeshJagtap \\ \uline{cheatography.com/umeshjagtap} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Published 25th August, 2023.\\ Updated 25th August, 2023.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{2} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{AIM}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Measurements using the Ocular Micrometer (Micrometry Technique).% Row Count 2 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{OBJECTIVES}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{1. Calibrate the Ocular Micrometer Scale. \{\{nl\}\}2. Measure samples using the Ocular Micrometer Scale.} \tn % Row Count 3 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{INTRODUCTION}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Micrometer scales within the ocular of a microscope are employed to determine sample sizes. These specialized oculars possess a transparent scale graticule superimposed onto the observed image. By replacing the stage micrometer with the sample slide, you can measure cell sizes. Micrometry is a crucial technique in biology, especially in microscopy, using ocular and stage micrometers to measure biological structures.% Row Count 9 (+ 9) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.32 cm} x{5.68 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{1. OCULAR MICROMETER}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Description:}} & Transparent ruler-like device without units, mounted on eyepiece. \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} {\bf{Design:}} & Glass disc featuring 10 mm scale divided into 100 sub-divisions. \tn % Row Count 6 (+ 3) % Row 2 \SetRowColor{LightBackground} {\bf{Visibility:}} & Scale visible through microscope eyepiece. \tn % Row Count 8 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.4 cm} x{5.6 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{2. STAGE MICROMETER}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Placement:}} & Positioned on microscope stage. \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} {\bf{Construction:}} & Slide with 2 mm scale divided into 0.01 mm (10 µm) sub-divisions. \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} {\bf{Function:}} & Used to calculate ocular micrometer divisions at specific magnifications. \tn % Row Count 8 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{REQUIREMENTS}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{\{\{fa-square-o\}\}Compound light microscope with bjectives (4X, 10X, 20X, 40X), \newline % Row Count 2 (+ 2) \{\{fa-square-o\}\}Ocular micrometer scale \newline % Row Count 3 (+ 1) \{\{fa-square-o\}\}Stage micrometer (0.01 mm scale). \newline % Row Count 4 (+ 1) \{\{fa-square-o\}\}Microscope Glass slide \newline % Row Count 5 (+ 1) \{\{fa-square-o\}\}Coverslip% Row Count 6 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{PROTOCOL}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Part I: Calibration of Ocular Micrometer}} \newline % Row Count 1 (+ 1) 1. Place the ocular micrometer in the microscope eyepiece. \newline % Row Count 3 (+ 2) 2. Adjust the lighting for optimal Kohler illumination. \newline % Row Count 5 (+ 2) 3. Focus on the stage micrometer using the lowest magnification. \newline % Row Count 7 (+ 2) 4. Rotate to the objective designated for calibration. \newline % Row Count 9 (+ 2) 5.Adjust the focus of the ocular micrometer to visualize both scales clearly. \newline % Row Count 11 (+ 2) 6. Align the stage and ocular scales with a slight offset for ease of reading. \newline % Row Count 13 (+ 2) 7. Choose two positions on each scale, preferably on opposite sides. \newline % Row Count 15 (+ 2) 8. Count the divisions on the stage scale (ssd) between the chosen positions. \newline % Row Count 17 (+ 2) 9. Count the divisions on the ocular scale (osd), which equals ssd. \newline % Row Count 19 (+ 2) 10. Record the number of ocular spaces (y) and stage spaces (x). \newline % Row Count 21 (+ 2) 11.Calculate the calibration factor: 1 ocular space = (x/y) × 10 µm. \newline % Row Count 23 (+ 2) 12.Repeat the process for the second assigned objective.% Row Count 25 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Figure1:}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/umeshjagtap_1692975189_Ocular.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Microscope Field of View Showing Ocular Micrometer and Stage Micrometer Superimposed each other.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Observation Table 1: Calibration of Objectives}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Objective Power} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{10X} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{} \tn % Row Count 2 (+ 0) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{} \tn % Row Count 2 (+ 0) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{40X} \tn % Row Count 3 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{} \tn % Row Count 3 (+ 0) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{} \tn % Row Count 3 (+ 0) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Part II: Protocol for Using Micrometers}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{1. Place biological sample slide (e.g. Pollen Grain), focus on area. \newline % Row Count 2 (+ 2) 2. Locate ocular micrometer through eyepiece. \newline % Row Count 3 (+ 1) 3. Align structure with ocular micrometer. \newline % Row Count 4 (+ 1) 4. Count ocular divisions needed to span the structure. \newline % Row Count 6 (+ 2) 5. Repeat for other objectives and other biological specimens. \newline % Row Count 8 (+ 2) 6. Record divisions for each measurement. \newline % Row Count 9 (+ 1) 7. Calculate structure size (e.g. pollen grain): Ocular divisions × calibration factor. \newline % Row Count 11 (+ 2) 8. This protocol accurately measures biological structures.% Row Count 13 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Observation Table2 :Measurement of Plant Samples}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Plant Samples} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Pollen Grain} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{} \tn % Row Count 2 (+ 0) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{} \tn % Row Count 2 (+ 0) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{} \tn % Row Count 2 (+ 0) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{} \tn % Row Count 2 (+ 0) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{} \tn % Row Count 2 (+ 0) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{RESULTS}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Size of Pollen Grain under 10X = \_\_\_\_\_\_\_\_\_ µm} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Size of Pollen Grain under 40X = \_\_\_\_\_\_\_\_\_ µm} \tn % Row Count 2 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{CONCLUSION}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{In conclusion, micrometer scales within microscope oculars are pivotal for accurate sample size determination in biology. By replacing the stage micrometer with a sample slide, cell sizes can be measured% Row Count 5 (+ 5) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}