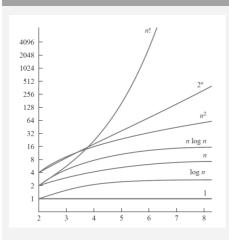
Cheatography

cs570 Cheat Sheet by tskmster07 via cheatography.com/194777/cs/40679/



Formally: there exist constants c and n0 such that for all sufficiently large n: $f(n) \le c \cdot g(n)$ c,n0 n : n \ge n0, $f(n) \le c \cdot g(n)$

Master theorem

$$\begin{split} T(n) &= a \cdot T(n/b) + f(n), \ a \geq 1 \ and \ b > 1 \\ let \ c &= log_b \ a \\ Case \ 1: \ (only \ leaves) \ if \ f(n) &= O(n^{C-e}), \ then \\ T(n) &= Theta(n^{C}) \ for \ some \ e > 0 \\ Case \ 2: \ (all \ nodes) \ if \ f(n) &= theta(n^{C} \ log^{k} \ n) \ , \\ k \geq 0 \ , \ T(n) &= theta(n^{C} \ log^{k+1}n) \\ Case \ 3: \ (only \ internal \ nodes) \ if \ f(n) &= \\ omega(n^{C+e}), \ then \ T(n) &= theta(f(n)) \ for \\ some \ e > 0 \end{split}$$

By tskmster07

cheatography.com/tskmster07/

Kruskals Algorithm

Sort all edges by their weights

- Loop:
- Choose the minimum weight edge and join
- correspondent vertices (subject to cycles).
- Go to the next edge.
- Continue to grow the forest until all

vertices are connected

Runtime Complexity:

Sorting edges – O(E log E)

Cycle detection – O(V) for each edge

Total: O(V * E + E * log E)

Depth-First-Search (DFS)

It starts at a selected node and explores as far as possible along each branch before backtracking. DFS uses a stack for backtracking

Breadth-First-Search (BFS)

It starts at a selected node and explores all nodes at the present depth prior to moving on to the nodes at the next depth level. BFS uses a FIFO queue for bookkeeping

Amortized Analysis

Aggregate method: The amortized cost of an operation is given by T(n) / nAccounting Method: We assign different charges to each operation; some operations may charge more or less than they actually cost.

Published 6th October, 2023. Last updated 6th October, 2023. Page 1 of 2.

Topological Sort

- 1. Select a vertex that has zero in-degree.
- 2. Add the vertex to the output.
- 3. Delete this vertex and all its outgoing
- edges.
- 4. Repeat

Coin Change

opt[k,x] = min(opt[k-1,x] , opt[k,x - dk] + 1) Base : opt[1,x] = x, opt[k,0] = 0

01 knapsack

opt[k,x] = max(vk + opt[k-1, x - wk], opt[k-1,x]base: opt[0,x] = 0, opt[k,0] = 0opt[k,x] = opt[k-1,x] if wk > x

Djikstra's Algorithm

When algorithm proceeds, all vertices are divided into two groups

- vertices whose shortest path from the source is known
- vertices whose shortest path from the source is NOT discovered yet. Move vertices one at a time from the undiscovered set of vertices to the known set of the shortest distances, based on the shortest distance from the source.

Runtime: O(V.log V + E.log V)

Sponsored by Readable.com Measure your website readability! https://readable.com

Cheatography

cs570 Cheat Sheet by tskmster07 via cheatography.com/194777/cs/40679/

Неар

	Binary	Binomial	Fibonacci
findMin	Θ(1)	Θ(1)	Θ(1)
deleteMin)Θ(log n)	Θ(log n)	O(log n) (ac)
insert	Θ(log n)	Θ(1) (ac)	0(1)
decreaseKey	Θ(log n)	Θ(log n)	Θ(1) (ac)
merge	Θ(n)	Θ(log n)	Θ(1) (ac)

Karatsuba

```
a \times b = (x1 \cdot 10^{n/2} + x0) \cdot (y1 \cdot 10^{n/2} + y0)
```

Strassen Algorithm

Prim's Algorithm

1) Start with an arbitrary vertex as a subtree C.

2) Expand C by adding a vertex having the minimum weight edge of the graph having exactly one end point in C.

3) Update distances from C to adjacent vertices.

4) Continue to grow the tree until C gets all vertices.

Runtime:

binary heap : O(V.log V + E. log V) Fibonacci heap: O(V. log V + 1) (ac)

By tskmster07

cheatography.com/tskmster07/

Published 6th October, 2023. Last updated 6th October, 2023. Page 2 of 2. Sponsored by Readable.com Measure your website readability! https://readable.com

Greedy Algorithm

It is used to solve optimization problems		
It makes a local optimal choice at each step		
Earlier decisions are never undone		
Does not always yield the optimal solution		

Longest Common Subsequence

LCS[i,j] = (1 + LCS[i-1,j-1]) if s[i] = s[j] LCS[i,j] = (max(lcs[i-1,j], max[i,j-1]) if s[i] != s[j] base case: lcs[i,0] = lcs[0,j] = 0

jontnm