Cheatography

Matrices Cheat Sheet

by Trina Dey via cheatography.com/136953/cs/28643/

Matrices

Addition	X + Y = [zij] = [xij + yij]
Subtraction	X - Y = [zij] = [xij - yij]
Multiplication	X * Y = [zij] = [xi * yj]
Constant	c * X = [zij] = [c * xij]

Transpose & Identity

Transpose	$X^T = [zij] = [xji]$
Tr of Tr	$(X^T)^T = X$
Tr of Mul	$(XY)^T = Y^T X^T != X^T Y^T$
Sym Matrix	$X^T = X$
Identity Matrix I [zii=1, zij=0]	XI = IX = X

Inverse

if X⁻¹ exists then X is non singular or invertible

Inv of	Inv	$(X^{-1})^{-1}$	$^{1} = X$

Inv of Mul
$$(XY)^{-1} = Y^{-1}X^{-1} != X^{-1}Y^{-1}$$

Inv of Tr
$$(X^{T})^{-1} = (X^{-1})^{T}$$

Determinant
$$|A| = {}^{n}\sum i=1 \text{ aij } x \text{ Det } |aij|$$

Determinant is computed over first row of matrix where each element of first row is multiplied by its minor

minor Mij is a determinant obtained by deleting the ith row and jth column in which aij lies. Minor of aij is denoted by mij.

Cofactor	Δ;; –	/_1\l+l	mi i

Adjoint
$$adj(A) = (Cofactor)^T = (Aij)^T$$

Inverse
$$A^{-1} = adj(A) / |A|$$

Orthogonal

Two n x 1 vectors are orthogonal if $X^T Y = 0$

A vector is orthonormal if $X^TX = ||X^2||$

Sq root of ||X|| is length or norm of vector

 $\{X1, X2, X3.... Xn\}$ are said to be orthonormal if, each pair is orthogonal and have unit length

A sq matrix is orthogonal if $X^{T}X = I$ or $X^{T} = X^{-1}$

Eigen Values & Eigen Vectors

A is nxn matrix, X is nx1 matrix, λ is a scalar, then

$$AX = \lambda X$$
 or $(A-\lambda I)X = 0$ or $X = (A-\lambda I)^{-1}$

 λ is the eigen value and X is the eigen vector (non zero)

Since X is non zero, |A-\lambda I| should be 0

Determinant for [a b] = ad - bc
[c d]

If A => symmetric, then eigenvalues => real $_{\text{R}}$

eigenvectors => orthogonal

Diagonalization: $P \Rightarrow$ orthogonal matrix, then $Z = P^TAP$, Z is diagonal matrix with eigen values of A

Linear Independence

Given a1x1 + a2x2 + ...anxn = 0, if a vector [a1, a2, ...an] exists such that

a. all ai are 0, then xi are linearly independent

b. if some ai!=0 then xi are linearly dependent.

If a set of vectors are linearly dependent, then one of them can be written as some combination of others

A set of two vectors is linearly dependent if and only if one of the vectors is a constant multiple of the other.

Idempotence

a nxn matrix A is idempotent iff $A^2 = A$

The identity matrix I is idempotent.

Let X be an n×k matrix of full rank ,n≥k then H exists as $H=X(X^TX)^{-1}X^T$ and is idempotent.

Rank

For a nxk matrix say X, the column vectors are [x1, x2, ...xk] and *rank* is given by max num of linearly independent vectors.

If X is a nxk matrix and r(X) = k, then X is of full rank for $n \ge k$.

$$r(X) = r(X^T) = r(X^TX)$$

If X is kxk, then X is non singular iff r(X) = k.

If X is $n \times k$, P is $n \times n$ and non-singular, and Q is $k \times k$ and nonsingular, then r(X) = r(PX) = r(XQ).

The rank of a diagonal matrix is equal to the number of non zero diagonal entries in the matrix.

 $r(XY) \le r(X) r(Y)$

Trace

The trace of a square $k \times k$ matrix X is sum of its diagonal entries -

If c is a scalar, tr(cX) = c * tr(X)

 $tr(X\pm Y) = tr(X) \pm tr(Y)$.

If XY and YX both exist, tr(XY) = tr(YX).

Quadratic Forms

A be a $k \times k$, y be $k \times 1$ vector containing variables $q = y^T$ Ay is called a quadratic form in y, A is called the matrix of the quadratic form

 $q = \sum \sum aijyiyj$

If $y^TAy > 0$ for all y != 0, $y^TAy & A$ are +ve definite

If $y^TAy >= 0$ for all y != 0, $y^TAy & A$ are +ve semidefinite

Matrix Differentiation

 $y = (y1, y2, ..., yk)^T, z = f(y) \text{ then } \partial z/\partial y = [\partial z/\partial y1 \ \partial z/\partial y2 \ \partial z/\partial y3]^T$

 $z=a^Ty$, $\partial z/\partial y=a$

 $z=y^Ty$, $\partial z/\partial y=2y$

 $z=y^TAy$, $\partial z/\partial y=Ay+A^Ty$, if A is symmetrix then $\partial z/\partial y=2Ay$

By Trina Dey

cheatography.com/trina-dey/

Published 3rd September, 2021. Last updated 3rd September, 2021. Page 1 of 2. Sponsored by **Readable.com**Measure your website readability!
https://readable.com

Matrices Cheat Sheet by Trina Dey via cheatography.com/136953/cs/28643/

Theorems

Theorem 1

Let A be a symmetric k×k matrix. Then an orthogonal matrix P exists such that P^TAP = λ x I, where λ = [λ 1, λ 2, λ n] are the eigen values of A as nx1 vector

Theorem 2

The eigenvalues of idempotent matrices are always either 0 or 1.

Theorem 3

If A is a symmetric and idempotent matrix, r(A) = tr(A)

Theorem 4

Let A1,A2,...,Am be a collection of symmetric k×k matrices.

Then the following are equivalent:

a. There exists an orthogonal matrix P such that $P^TA_{\perp}P$ is diagonal for all i=1,2,...,m;

b. AiAj = AjAi for every pair i,j = 1,2,...,m.

Theorem 5

Let A1,A2,...,Am be a collection of symmetric k×k matrices.

Then any two of the following conditions implies the third:

- a. All Ai, i= 1,2,...,m are idempotent;
- b. ∑ Ai is idempotent;
- c. AiAj= 0for i6=j

Theorem 6

Let A1,A2,...,Am be a collection of symmetric k×k matrices. If the conditions in Theorem 5 are true, then $r(\Sigma A \dot{\texttt{l}}) = \Sigma r(A \dot{\texttt{l}})$

Theroem 7

A symmetric matrix A is positive definite if and only if its eigen values are all (strictly) positive

Theorem 8

A symmetric matrix A is positive semi-definite if and only if its eigenvalues are all non-negative.

By **Trina Dey** cheatography.com/trina-dey/

Published 3rd September, 2021. Last updated 3rd September, 2021. Page 2 of 2. Sponsored by **Readable.com**Measure your website readability!
https://readable.com