Matrices	
Addition	$\mathrm{X}+\mathrm{Y}=[\mathrm{zij}]=[\mathrm{xij}+\mathrm{yij}]$
Subtraction	$\mathrm{X}-\mathrm{Y}=[\mathrm{zij}]=[\mathrm{xij}-\mathrm{yij}]$
Multiplication	$\mathrm{X} * \mathrm{Y}=[\mathrm{zij}]=\left[\mathrm{xi}{ }^{*} \mathrm{yj}\right]$
Constant	$\mathrm{C}^{*} \mathrm{X}=[\mathrm{zij}]=\left[\mathrm{c}^{*}\right.$ xij $]$

Transpose \& Identity

Transpose	$\mathrm{X}^{\top}=[\mathrm{zij}]=[\mathrm{xji}]$
Tr of Tr	$\left(X^{\top}\right)^{\top}=X$
Tr of Mul	$(X Y){ }^{\top}=Y^{\top} X^{\top}!=X^{\top} Y^{\top}$
Sym Matrix	$X^{\top}=X$
Identity Matrix I [zii=1, zij=0]	$X I=I X=X$

Inverse

Inverse

$$
X X^{-1}=I=X^{-1} X
$$

if X^{-1} exists then X is non singular or invertible
Inv of Inv

$$
\left(X^{-1}\right)^{-1}=X
$$

Inv of Mul $\quad(X Y)^{-1}=Y^{-1} X^{-1}!=X^{-1} Y^{-1}$
Inv of $\operatorname{Tr} \quad\left(X^{\top}\right)^{-1}=\left(X^{-1}\right)^{\top}$
Determinant $|A|={ }^{n} \sum i=1$ aij x Det $|a i j|$
Determinant is computed over first row of matrix where each element of first row is multiplied by its minor
minor Mij is a determinant obtained by deleting the $i^{\text {th }}$ row and $j^{\text {th }}$ column in which aij lies. Minor of $\mathrm{aij}_{\mathrm{j}}$ is denoted by mij .
Cofactor $\quad \mathrm{A}_{\mathrm{ij}}=(-1)^{\mathrm{i}+j} \mathrm{~m}_{\mathrm{ij}}$
Adjoint $\quad \operatorname{adj}(A)=(\text { Cofactor })^{\top}=\left(\mathrm{A}_{\mathrm{i} j}\right)^{\top}$
Inverse $\quad A^{-1}=\operatorname{adj}(A) /|A|$

Orthogonal

Two $n \times 1$ vectors are orthogonal if $X^{\top} Y=0$
A vector is orthonormal if $X^{\top} X=\left\|X^{2}\right\|$
Sq root of \|X\| is length or norm of vector
$\left\{\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X} 3 \ldots . \mathrm{Xn}_{n}\right.$) are said to be orthonormal if, each pair is orthogonal and have unit length
A sq matrix is orthogonal if $X^{\top} X=1$ or $X^{\top}=X^{-1}$

By Trina Dey

cheatography.com/trina-dey/

Eigen Values \& Eigen Vectors

A is $n \times n$ matrix, X is $n \times 1$ matrix, λ is a scalar, then
$A X=\lambda X$ or $(A-\lambda I) X=0$ or $X=(A-\lambda I)^{-1}$
λ is the eigen value and X is the eigen vector (non zero)

Since X is non zero, $|A-\lambda| \mid$ should be 0
Determinant for $[\mathrm{a} b]=\mathrm{ad}-\mathrm{bc}$
[c d]
If $A \Rightarrow$ symmetric, then eigenvalues \Rightarrow real \&
eigenvectors => orthogonal
Diagonalization: $\mathrm{P}=>$ orthogonal matrix, then $Z=P^{\top} A P, Z$ is diagonal matrix with eigen values of A

Linear Independence

Given $\mathrm{a} 1 \mathrm{x} 1+\mathrm{a} 2 \mathrm{x} 2+\ldots \mathrm{an} \mathrm{xn}=0$, if a vector [a1, a2, ...an] exists such that
a. all ai are 0 , then xi are linearly independent.
b. if some ai!=0 then xi are linearly dependent.
If a set of vectors are linearly dependent, then one of them can be written as some combination of others

A set of two vectors is linearly dependent if and only if one of the vectors is a constant multiple of the other.

Idempotence

a nxn matrix A is idempotent iff $A^{2}=A$
The identity matrix I is idempotent.
Let X be an $n \times k$ matrix of full rank, $n \geq k$ then H exists as $H=X\left(X^{\top} X\right)^{-1} X^{\top}$ and is idempotent.

Published 3rd September, 2021. Last updated 3rd September, 2021.
Page 1 of 2 .

Rank

For a nxk matrix say X, the column vectors are $[\mathrm{x} 1, \mathrm{x} 2, \ldots \mathrm{xk}]$ and rank is given by max num of linearly independent vectors.
If X is a nxk matrix and $r(X)=k$, then X is of full rank for $n \geq k$.
$r(X)=r\left(X^{\top}\right)=r\left(X^{\top} X\right)$
If X is $k x k$, then X is non singular iff $r(X)=k$.
If X is $n \times k, P$ is $n \times n$ and non-singular, and Q is $k \times k$ and nonsingular, then $r(X)=r(P X)$ $=r(X Q)$.

The rank of a diagonal matrix is equal to the number of non zero diagonal entries in the matrix.
$r(X Y) \leq r(X) r(Y)$

Trace

The trace of a square $k \times k$ matrix X is sum of its diagonal entries -
$\operatorname{tr}(\mathrm{X})=\sum$ xii
If c is a scalar, $\operatorname{tr}(c X)=c$ * $\operatorname{tr}(X)$
$\operatorname{tr}(\mathrm{X} \pm \mathrm{Y})=\operatorname{tr}(\mathrm{X}) \pm \operatorname{tr}(\mathrm{Y})$.
If $X Y$ and $Y X$ both exist, $\operatorname{tr}(X Y)=\operatorname{tr}(Y X)$.

Quadratic Forms

A be a $k \times k, y$ be $k \times 1$ vector containing variables $q=y^{\top}$ Ay is called a quadratic form in y, A is called the matrix of the quadratic form
$q=\Sigma \Sigma$ aijyiyj
If $y^{\top} A y>0$ for all $y!=0, y^{\top} A y \& A$ are $+v e$ definite
If $y^{\top} A y>=0$ for all $y!=0, y^{\top} A y \& A$ are $+v e$ semidefinite

> Matrix Differentiation
> $y=(y 1, y 2, \ldots, y k)^{\top}, z=f(y)$ then $\partial z / \partial y=$
> $[\partial z / \partial y 1 \partial z / \partial y 2 \partial z / \partial y 3]^{\top}$
> $z=a^{\top} y, \partial z / \partial y=a$
> $z=y^{\top} y, \partial z / \partial y=2 y$
> $z=y^{\top} A y, \partial z / \partial y=A y+A^{\top} y$, if A is symmetrix
> then $\partial z / \partial y=2 A y$

Sponsored by Readable.com

Measure your website readability!
https://readable.com

Matrices Cheat Sheet

Theorems

Theorem 1
Let A be a symmetric $k \times k$ matrix. Then an orthogonal matrix P exists such that $P^{\top} A P=\lambda x I$, where $\lambda=\left[\lambda 1, \lambda 2, \ldots . \lambda_{n}\right]$ are the eigen values of A as $n \times 1$ vector

Theorem 2
The eigenvalues of idempotent matrices are always either 0 or 1 .

Theorem 3
If A is a symmetric and idempotent matrix, $r(A)=\operatorname{tr}(A)$
Theorem 4
Let $\mathrm{A} 1, \mathrm{~A} 2, \ldots, \mathrm{Am}$ be a collection of symmetric $\mathrm{k} \times \mathrm{k}$ matrices.
Then the following are equivalent:
a. There exists an orthogonal matrix P such that $P^{\top} A i P$ is
diagonal for all $i=1,2, \ldots, m$;
b. $A i A j=A j A i$ for every pair $i, j=1,2, \ldots, m$.

Theorem 5
Let $A 1, A 2, \ldots, A m$ be a collection of symmetric $k \times k$ matrices.
Then any two of the following conditions implies the third:
a. All $\mathrm{Ai}, \mathrm{i}=1,2, \ldots, \mathrm{~m}$ are idempotent;
b. $\sum A \mathrm{i}$ is idempotent;
c. $A i A j=$ Ofor $i 6=j$

Theorem 6
Let $\mathrm{A} 1, \mathrm{~A} 2, \ldots, \mathrm{Am}$ be a collection of symmetric $\mathrm{k} \times \mathrm{k}$ matrices. If
the conditions in Theorem 5 are true, then
$r\left(\sum A i\right)=\sum r(A i)$
Theroem 7
A symmetric matrix A is positive definite if and only if its eigen values are all (strictly) positive

Theorem 8
A symmetric matrix A is positive semi-definite if and only if its eigenvalues are all non-negative.

By Trina Dey
cheatography.com/trina-dey/

Published 3rd September, 2021.
Last updated 3rd September, 2021.
Page 2 of 2.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

