Cheatography

Matrices Cheat Sheet by Trina Dey via cheatography.com/136953/cs/28643/

Matrices	
Addition	X + Y = [zij] = [xij + yij]
Subtraction	X - Y = [zij] = [xij - yij]
Multiplication	X * Y = [zij] = [xi * yj]
Constant	c * X = [zij] = [c * xij]

Transpose & Identity

Transpose	$X^T = [zij] = [xji]$
Tr of Tr	$(X^T)^T = X$
Tr of Mul	$(XY)^T = Y^T X^T \mathrel{!=} X^T Y^T$
Sym Matrix	$X^T = X$
Identity Matrix I [zii=1, zij=0]	X

Inverse

 $X X^{-1} = I = X^{-1}X$ Inverse

if X⁻¹ exists then X is non singular or invertible

Inv of Inv	$(X^{-1})^{-1} = X$
Inv of Mul	$(XY)^{-1} = Y^{-1}X^{-1} != X^{-1}Y^{-1}$
Inv of Tr	$(X^{T})^{-1} = (X^{-1})^{T}$
Determinant	A = ⁿ ∑i=1 aij x Det aij

Determinant is computed over first row of matrix where each element of first row is multiplied by its minor

minor Mij is a determinant obtained by deleting the ith row and jth column in which aij lies. Minor of aij is denoted by mij.

Cofactor	Aij = (-1) ^{i+j} mij
Adjoint	$\text{adj}(A) = (\text{Cofactor})^{T} = (A \text{ij})^{T}$
Inverse	$A^{-1} = adj(A) / A $

Orthogonal

Two n x 1 vectors are orthogonal if $X^T Y = 0$

A vector is orthonormal if $X^T X = ||X^2||$

Sq root of ||X|| is length or norm of vector {X1, X2, X3.... Xn) are said to be orthonormal if, each pair is orthogonal and have unit length

A sq matrix is orthogonal if $X^{T}X = I$ or $X^{T} = X^{-1}$

By Trina Dey cheatography.com/trina-dey/

Eigen Values & Eigen Vectors

A is nxn matrix, X is nx1 matrix, λ is a scalar, then

 $AX = \lambda X \text{ or } (A - \lambda I)X = 0 \text{ or } X = (A - \lambda I)^{-1}$

 λ is the eigen value and X is the eigen vector (non zero)

Since X is non zero, $|A-\lambda I|$ should be 0

Determinant for [a b] = ad - bc [c d]

If A => symmetric, then eigenvalues => real &

eigenvectors => orthogonal

Diagonalization: $P \Rightarrow$ orthogonal matrix, then $Z = P^{T}AP$, Z is diagonal matrix with eigen values of A

Linear Independence

Given $a_1x_1 + a_2x_2 + ...a_nx_n = 0$, if a vector [a1, a2, ...an] exists such that

a. all ai are 0, then xi are linearly independent.

b. if some ai != 0 then xi are linearly dependent.

If a set of vectors are linearly dependent, then one of them can be written as some combination of others

A set of two vectors is linearly dependent if and only if one of the vectors is a constant multiple of the other.

Idempotence

a nxn matrix A is idempotent iff $A^2 = A$

The identity matrix I is idempotent.

Let X be an n×k matrix of full rank ,n≥k then H exists as $H=X(X^TX)^{-1}X^T$ and is idempotent

Last updated 3rd September, 2021. Page 1 of 2.

Rank

For a nxk matrix say X, the column vectors are [x1, x2, ...xk] and rank is given by max num of linearly independent vectors.

If X is a nxk matrix and r(X) = k, then X is of full rank for $n \ge k$.

 $r(X) = r(X^{T}) = r(X^{T}X)$

If X is kxk, then X is non singular iff r(X) = k.

If X is n×k, P is n×n and non-singular, and Q is k×k and nonsingular, then r(X) = r(PX)=r(XQ).

The rank of a diagonal matrix is equal to the number of non zero diagonal entries in the matrix.

 $r(XY) \leq r(X) r(Y)$

Trace

The trace of a square k×k matrix X is sum of its diagonal entries $tr(X) = \sum xii$ If c is a scalar, tr(cX) =c * tr(X) $tr(X \pm Y) = tr(X) \pm tr(Y).$ If XY and YX both exist, tr(XY) =tr(YX).

Quadratic Forms

A be a $k \times k$, y be $k \times 1$ vector containing variables $q = y^T A y$ is called a quadratic form in y, A is called the matrix of the quadratic form

q = Σ Σ aijyiyj

If $y^{T}Ay > 0$ for all y != 0, $y^{T}Ay \& A$ are +ve definite

If $y^{T}Ay \ge 0$ for all y != 0, $y^{T}Ay \& A$ are +ve semidefinite

Matrix Differentiation

 $y = (y1, y2, \dots, yk)^T$, z = f(y) then $\partial z/\partial y =$ [$\partial z/\partial y_1 \partial z/\partial y_2 \partial z/\partial y_3$]^T $z=a^Ty, \partial z/\partial y = a$ $z=y^{T}y, \partial z/\partial y = 2y$ $z=y^{T}Ay$, $\partial z/\partial y = Ay + A^{T}y$, if A is symmetrix then $\partial z/\partial y = 2Ay$

Sponsored by Readable.com Measure your website readability! https://readable.com

Published 3rd September, 2021.

Cheatography

Theorems

Theorem 1

Let A be a symmetric k×k matrix. Then an orthogonal matrix P exists such that $P^{T}AP = \lambda \times I$, where $\lambda = [\lambda 1, \lambda 2, ..., \lambda n]$ are the eigen values of A as nx1 vector

Theorem 2

The eigenvalues of idempotent matrices are always either 0 or 1.

Theorem 3

If A is a symmetric and idempotent matrix, r(A) =tr(A)

Theorem 4

Let A1,A2,...,Am be a collection of symmetric $k \times k$ matrices. Then the following are equivalent:

a. There exists an orthogonal matrix P such that $P^TA_{i}P$ is

diagonal for all i= 1,2,...,m;

b. AiAj=AjAi for every pair i,j= 1,2,...,m.

Theorem 5

Let A_1, A_2, \dots, A_m be a collection of symmetric k×k matrices.

Then any two of the following conditions implies the third:

a. All Ai, i= 1,2,...,m are idempotent;

- b. ∑ Ai is idempotent;
- c. AiAj= 0for i6=j

Theorem 6

Let A1,A2,...,Am be a collection of symmetric k×k matrices. If the conditions in Theorem 5 are true, then $r(\Sigma Ai) = \Sigma r(Ai)$

Theroem 7

A symmetric matrix A is positive definite if and only if its eigen values are all (strictly) positive

Theorem 8

A symmetric matrix A is positive semi-definite if and only if its eigenvalues are all non-negative.

By **Trina Dey**

cheatography.com/trina-dey/

Published 3rd September, 2021. Last updated 3rd September, 2021. Page 2 of 2. Sponsored by **Readable.com** Measure your website readability! https://readable.com