Cheatography

Sets | Languages & Automata Cheat Sheet by Torvak via cheatography.com/32041/cs/12709/

Set symbols			
Set	{}	a collection of elements	A = {3,7,9,14} , B = {9,14,28}
Such that	I	such that	$A = \{x \mid x \in \mathbb{R}, \\bb\{R\}, \\x < 0\}$
Intersection	A∩B	belongs to both A AND B at	A ∩ B = {9,14}
Union	AuB	belongs to either A OR B	A ∪ B = {3,7,9,14, 28}
Subset	A⊆B	A is a subset of B. Set A is included in set B.	{9,14,28} ⊆ {9,14,28}
Proper subset / strict subset	А⊂В	A is a subset of B, but A is not equal to B	{9,14} ⊂ {9,14,28}
Not a subset	A⊄B	Set A is not a subset of set B	{9,66} ⊄ {9,14,28}
Superset	A⊇B	A is a superset of B. Set A includes set B	{9,14,28} ⊇ {9,14,28}
Proper superset / strict superset	A⊃B	A is a superset of B, but B is not equal to A	{9,14,28} ⊃ {9,14}
Not superset	A⊅B	Set A is not a superset of set B	{9,14,28} ⊅ {9,66}
Power set	2 ^A	All subsets of A	Ą
Power set	P(A)	All subsets of A	4

Set symbo	ols (cor	nt)	
Equality	A=B	Both sets have the same members	A= {3,9,14}, B= {3,9,14}, A=B
Comple ment	Ac	All the objects the belong to set A	nat do not
Relative comple- ment	A\B or A- B	Objects that belong to A and not to B	A = {3,9,14}, B = {1,2,3}, A \ B = {9,14}
Symmet ric differen ce	A∆B or A⊖B	Objects that belong to A or B but not to their intersection	A = {3,9,14}, B = {1,2,3}, A \triangle B = {1,2,9,14}
Element of	a∈A	Set membership	A= {3,9,14}, 3 ∈ A
Not element of	x∉A	No set membership	A= {3,9,14}, 1 ∉ A
Ordered pair	(a,b)	Collection of 2 e	elements
Cartesia n product	A×B	Set of all ordere A and B	d pairs from
cardinalit y	A or #A	The number of elements of set A	A= {3,9,14}, A =3

Set operations	
Associativity	$(A \cup B) \cup C = A \cup (B \cup C)$ $(A \cap B) \cap C = A \cap (B \cap C)$
Commutativity	A∪B = B∪A A∩B = B∩A
Complementation	$A \cup Not(A) = U$ $A \cap Not(A) = \emptyset$
Idempotence	$A \cup A = A \text{ et } A \cap A$
Identité	Au∅ = A A∩U = A

Set operations (cont)		
Extrémité	$A \cup U = U$ $A \cap \emptyset = \emptyset$	
Involution	Not(A) = A	
Morgan's law	$(Not(A \cup B)) = Not(A) \cap Not(B)$ $(Not(A \cap B)) = Not(A) \cup Not(B)$	
Distribuvité	$\begin{aligned} A \cup (B \cap C) &= (A \cup B) \cap (A \cup C) \\ A \cap (B \cup C) &= (A \cap B) \cup (A \cap C) \end{aligned}$	

Languages	- Definitions
Formal language	vocabulary + grammar rules
Monoid	Set having an internal binary operation (+,-,*/, U,) and having a neutral element \in . Ex: $\langle E,+,\in \rangle$ means all strings of E will be concaneted with operator +
Grammar	$\begin{array}{l} (Vn, Vt, P, S) \text{ when:} \\ - Vn \text{ is a finite non-empty set} \\ \text{whose elements are variables} \\ - VT \text{ is a finite non-empy set of} \\ \text{terminal states} \\ - Vn \cap \varepsilon = \emptyset \\ -P \text{ is a finite set whose elements} \\ \text{are } \alpha \rightarrow \beta, \text{ known as production} \\ \text{rules when } \alpha, \beta, \in (Vn \cup \varepsilon)^* \text{ but } \alpha \\ \text{should contain at least 1 symbol} \\ \text{from Vn} \\ - S \text{ is a start symbol, where } S \in \\ \text{Vn} \end{array}$
Symbol	Element of a set. Ex for set A = {1, 2, 3}, 2 is an element
Alphabet	A finite and non empty set of symbols

С

By **Torvak** cheatography.com/torvak/ Not published yet. Last updated 16th September, 2017. Page 1 of 2. Sponsored by **Readability-Score.com** Measure your website readability! https://readability-score.com

Cheatography

Sets | Languages & Automata Cheat Sheet by Torvak via cheatography.com/32041/cs/12709/

Languages	- Definitions (cont)
Length of a string	Number of symbols in a string. Ex: for w = aabbc, w = 5
Empty Ianguage	Ø contains no string
Empty string	ϵ where $ \epsilon $ = 0
A ⁿ	Word of length ${\boldsymbol n}$ from the alpabet ${\boldsymbol A}$
A [*]	Words of finite length from the alphabet A or null (can be empty: ϵ)
A+	Words of finite length from the alphabet A and NOT NULL (no $\epsilon)$
Regular expressio n	Rercursive language, the rules of the expression must be indepent.Ex: $L1 = \{a^n n^{2n} n >= 0, m >= 0\}$ and $L2 = \{a^n b^m n = 2m\}$ Here L1 is regular and L2 is not Because in L2 there is a dependency between n and m

Maths set reminders		
Ν	{0,1,2,3,}	
Z	{,-3,-2,-1,0,1,2,3,}	
D	{d d is a nb. having a finite number of decimals }	
Q	{ r r is a rational nb. that can be written as the quotien a/b of a real integer number a by a whole integer (not null) b}}	
IR	{,-3,-2,-1,0,¥, 1, √2, 2, e, 3, π,}	
Successive inclusions	$N \subset Z \subset D \subset Q \subset IR$	

Automata definitions

DFA	has a is de	stic Finite Automata. A DFA eterministic because from e we are able to determine tate.	
NDFA	Non Deterministic Finite Automata. A NDFA is non deterministic because we can't always determiner determine which will be the next state from the present state.		
Operation	Operations on Languages		
Union		$L \cup M = \{x \mid x \in L \text{ or } x \in M\}$	
Intersec	tion	$L \cap M = \{x \mid x \in L \text{ and } x \in M\}$	
Differen sion)	ce(exclu	$L M = \{x \mid x \in L \text{ and } x \notin M\}$	
Comple	ment on	$Comp(L) = A L = \{x x \in A$	
A [*]		and $x \notin L$ }	
LuØ = L L∩Ø = L			

Identity of Regular Expressions
$\emptyset + R = R$
\emptyset .R = R.Ø = Ø
Λ .R = R. Λ = R
$\Lambda^* = \Lambda$ and $\emptyset^* = \Lambda$
R+R = R
R*R*=R*
R.R* = R.*R
(R*)=R*
$\Lambda + R.R^* = R^* = \Lambda + R^*.R$
(P.Q)*P=P(Q.P)*
(P+Q)*=(P*.Q*)*=(P*+Q*)*
(P+Q).R=P.R+Q.R and $R(P+Q)=R.P+R.Q$

Graph types

Refle xif	All states have a loop, meaning $\delta(\text{state1}, \text{input}) = \text{state1}$
Syme tric	All states have a direct way back , meaning: $\delta(A,x)=B \text{ and } \delta(B,y)=A$

By Torvak cheatography.com/torvak/

Not published yet. Last updated 16th September, 2017. Page 2 of 2.

Graph types (cont)

Anti	There never is a direct way back to
symetric	the same state meaning, if : $\delta(A,x) = B$ then $\delta(B, y) \neq A$
Transitiv e	There a shortcuts to a state, meaning if:

Grammar construction

Problem – Suppose : $L(Gr) = \{a^{n}b^{m}c^{k} \mid n \ge 0, k \ge 1, m = n+k\}$ We have to find out the grammar Gr which produces L(Gr). Solution: Possible word $w = a^4 b^9 c^5$ We need to decompose b^9 : $\mathbf{w} = \mathbf{a}^4 \mathbf{b}^4 \mathbf{b}^5 \mathbf{c}^5$ Now we can define : - S1 having the same number of a followed by the same number of b. - S2 having the same number of b followed by the same number of a So: S = S1 S2 S1 = a S1 b | Λ S2 = b S2 a | bbcc Why bbcc as alternative to S2? Because in the case of a minimum word $w = b^2 c^2 = bbcc$ because k > 1 so in this case we do have m =n+k = 0+2

Sponsored by **Readability-Score.com** Measure your website readability! https://readability-score.com