

Sets | Languages & Automata Cheat Sheet by Torvak via cheatography.com/32041/cs/12709/

Set symbols	8		
Set	{}	a collection of elements	A = {3,7,9,14 }, B = {9,14,28}
Such that	I	such that	A = {x x∈\mat- hbb{R}, x<0}
Inters- ection	A∩B	belongs to both A AND B at	A ∩ B = {9,14}
Union	AuB	belongs to either A OR B	A ∪ B = {3,7,9,14,28}
Subset	A⊆B	A is a subset of B. Set A is included in set B.	{9,14,28} ⊆ {9,14,28}
Proper subset / strict subset	A⊂B	A is a subset of B, but A is not equal to B	{9,14} ⊂ {9,14,28}
Not a subset	A⊄B	Set A is not a subset of set B	{9,66} ⊄ {9,14,28}
Superset	A⊇B	A is a superset of B. Set A includes set B	{9,14,28} ⊇ {9,14,28}
Proper superset / strict superset	A⊃B	A is a superset of B, but B is not equal to A	{9,14,28} ⊃ {9,14}
Not superset	А⊅В	Set A is not a superset of set B	{9,14,28} ⊅ {9,66}
Power set	2 ^A	All subsets of	A
Power set	P(A)	All subsets of	F A

Set symbols (cont)		
Equality	A=B	Both sets have the same members	A= {3,9,14}, B= {3,9,14}, A=B
Complement	A ^c	All the objects	
Relative complement	A\B or A-B	Objects that belong to A and not to B	A = {3,9,14}, B = {1,2,3}, A \ B = {9,14}
Symmetric difference	A∆B or A⊖B	Objects that belong to A or B but not to their intersection	A = $\{3,9,14\}$, B = $\{1,2,3\}$, A \triangle B = $\{1,2,9,14\}$
Element of	a∈A	Set membership	$A=$ {3,9,14}, $3 \in A$
Not element of	x∉A	No set membership	A= {3,9,14}, 1 ∉ A
Ordered pair	(a,b)	Collection of	2 elements
Cartesian product	A×B	Set of all order	ered pairs
cardinality	A or #A	The number of elements of set A	A= {3,9,14}, A =3
Set operations			
Associativity		$(A \cup B) \cup C = A \cup (A \cap B) \cap C = A \cap (A \cap B) \cap $, ,
Commutativity		AuB = BuA AnB = BnA	
Complementa	tion	$A \cup Not(A) = U$ $A \cap Not(A) = \emptyset$	
Idempotence		AuA = A et AnA	A

	Extrémité	$A \cup U = U$ $A \cap \varnothing = \varnothing$
	Involution	Not(A) = A
	Morgan's law	$(Not(A \cup B)) = Not(A) \cap Not(B)$ $(Not(A \cap B)) = Not(A) \cup Not(B)$
	Distribuvité	AU(BnC) = (AUB) n (AUC) An(BUC) = (AnB) U (AnC)
	Languages	- Definitions
Α.	Formal language	vocabulary + grammar rules
A	Monoid	Set having an internal binary operation (+,-,*/, U,) and having a neutral element ∈. Ex: <e,+,∈> means all strings of E will be concaneted with operator +</e,+,∈>
1}	Grammar	$\label{eq:continuous} \begin{tabular}{ll} (Vn, Vt, P, S) when: \\ - Vn is a finite non-empty set \\ whose elements are variables \\ - VT is a finite non-empty set of terminal states \\ - Vnnϵ = ∞ -P is a finite set whose elements are α -> β, known as production rules when α, ϵ (Vnu$)* but α should contain at least 1 symbol from Vn - S is a start symbol, where $S \in Vn \end{pmatrix}$
	Symbol	Element of a set. Ex for set A = {1, 2, 3}, 2 is an element
	Alphabet	A finite and non empty set of symbols

Set operations (cont)

By **Torvak**

cheatography.com/torvak/

Not published yet. Last updated 16th September, 2017. Page 1 of 2.

 $A \cup \emptyset = A$ $A \cap U = A$

Identité

Sponsored by **Readable.com**Measure your website readability!
https://readable.com

Sets | Languages & Automata Cheat Sheet by Torvak via cheatography.com/32041/cs/12709/

Languages -	Definitions (cont)
Length of a string	Number of symbols in a string. Ex: for w = aabbc, w = 5
Empty language	Ø contains no string
Empty string	ϵ where $ \epsilon = 0$
A ⁿ	Word of length \mathbf{n} from the alpabet \mathbf{A}
A [*]	Words of finite length from the alphabet A or null (can be empty: ϵ)
A ⁺	Words of finite length from the alphabet A and NOT NULL (no $\boldsymbol{\epsilon})$
Regular expression	Rercursive language, the rules of the expression must be indepent.Ex: L1 = {a^nn^{2n} n>=0, m>= 0} and L2 = {a^nb^m n = 2m} Here L1 is regular and L2 is not. Because in L2 there is a dependency between n and m

Maths set re	minders
N	{0,1,2,3,}
Z	{,-3,-2,-1,0,1,2,3,}
D	{d d is a nb. having a finite number of decimals }
Q	{ r r is a rational nb. that can be written as the quotien a/b of a real integer number a by a whole integer (not null) b}}
IR	$\{,-3,-2,-1,0,\bigvee,\ 1,\ \sqrt{2},\ 2,\ e,\ 3,\ \pi,\}$
Successive inclusions	$N \subset Z \subset D \subset Q \subset IR$

Automat	ta definitions
DFA	Deterministic Finite Automata. A
	DFA has a is deterministic
	because from each state we are
	able to determine the next state.
NDFA	Non Deterministic Finite Automata.
	A NDFA is non deterministic
	because we can't always
	determiner determine which will be
	the next state from the present
	state.

Operations on La	anguages
Union	$L \cup M = \{x \mid x \in L \text{ or } x \in M\}$
Intersection	$L \cap M = \{x \mid x \in L \text{ and } x \in M\}$
Difference(e- xclusion)	$L\M = \{x \mid x \in L \text{ and } x \notin M\}$
Complement on A*	Comp(L) = AIL = $\{x x \in A$ and $x \notin L\}$
LuØ = L LnØ = L	

Identity of Regular Expressions

Ø + R = R
\varnothing .R = R. \varnothing = \varnothing
$\Lambda.R = R.\Lambda = R$
$\Lambda^* = \Lambda$ and $\emptyset^* = \Lambda$
R+R = R
R*R*=R*
R.R* = R.*R
(R*)=R*
$\Lambda + R.R^* = R^* = \Lambda + R^*.R$
$(P.Q)^*P=P(Q.P)^*$
(P+Q)*=(P*.Q*)*=(P*+Q*)*

(P+Q).R=I	P.R+Q.R and R(P+Q)=R.P+R.Q
Graph type	es
олартур	
Reflexif	All states have a loop, meaning
	δ(state1, input) = state1
Symetric	All states have a direct way
	back, meaning:
	$\delta(A, x) = B$ and $\delta(B,y) = A$

Graph types (cont) There never is a direct way symetric back to the same state meaning, if: $\delta(A,x) = B \text{ then } \delta(B, y) \neq A$ Transitive There a shortcuts to a state, meaning if:

Grammar construction
Problem - Suppose :
$L(Gr) = {a^n b^m c^k n \ge 0, k \ge 1, m = n+k}$
We have to find out the grammar Gr which
produces L(Gr).
Solution:
Possible word $\mathbf{w} = \mathbf{a}^4 \mathbf{b}^9 \mathbf{c}^5$
We need to decompose b^9 : $\mathbf{w} = \mathbf{a}^4 \mathbf{b}^4 \mathbf{b}^5 \mathbf{c}^5$

Now we can define :

- S1 having the same number of a followed by the same number of b.
- S2 having the same number of b followed by the same number of a.

So: S = S1 S2 $S1 = a S1 b | \Lambda$ S2 = b S2 a | bbcc

Why bbcc as alternative to S2? Because in the case of a minimum word $\mathbf{w} = \mathbf{b}^2 \mathbf{c}^2 =$ **bbcc** because k > 1 so in this case we do have m = n+k = 0+2

By Torvak

cheatography.com/torvak/

Not published yet.

Last updated 16th September, 2017.

Page 2 of 2.

Sponsored by Readable.com Measure your website readability!

https://readable.com