

Sets | Languages & Automata Cheat Sheet by Torvak via cheatography.com/32041/cs/12709/

Set symbols			
Set	{}	a collection of elements	A = {3,7,9,14} , B = {9,14,28}
Such that		such that	$A = \{x \mid x \in \mathbb{R}, \\ bb\{R\}, \\ x < 0\}$
Intersection	A∩B	belongs to both A AND B at	A ∩ B = {9,14}
Union	AuB	belongs to either A OR B	A U B = {3,7,9,14, 28}
Subset	A⊆B	A is a subset of B. Set A is included in set B.	{9,14,28} ⊆ {9,14,28}
Proper subset / strict subset	A⊂B	A is a subset of B, but A is not equal to B	,
Not a subset	A⊄B	Set A is not a subset of set B	{9,66} ⊄ {9,14,28}
Superset	A⊇B	A is a superset of B. Set A includes set B	{9,14,28} ⊇ {9,14,28}
Proper superset / strict superset	A⊃B	A is a superset of B, but B is not equal to A	{9,14,28} ⊃ {9,14}
Not superset	А⊅В	Set A is not a superset of set B	{9,14,28} <i>⊅</i> {9,66}
Power set	2 ^A	All subsets of	4
Power set	P(A)	All subsets of	Α

Set symbo	ols (cor	nt)	
Equality	A=B	Both sets have the same members	A= {3,9,14}, B= {3,9,14}, A=B
Comple ment	Ac	All the objects the belong to set A	nat do not
Relative comple- ment	A\B or A- B	Objects that belong to A and not to B	A = {3,9,14}, B = {1,2,3}, A \ B = {9,14}
Symmet ric differen ce	AΔB or A⊝B	Objects that belong to A or B but not to their intersection	A = $\{3,9,14\}$, B = $\{1,2,3\}$, A \triangle B = $\{1,2,9,14\}$
Element of	a∈A	Set membership	A= {3,9,14}, 3 ∈ A
Not element of	x∉A	No set membership	A= {3,9,14}, 1 ∉ A
Ordered pair	(a,b)	Collection of 2 e	elements
Cartesia n product	A×B	Set of all ordere A and B	d pairs from
cardinalit y	A or #A	The number of elements of set A	A= {3,9,14}, A =3

Symmet ric differen ce	AΔB or A⊖B	Objects that belong to A or B but not to their intersection	A = $\{3,9,14\}$, B = $\{1,2,3\}$, A \triangle B = $\{1,2,9,14\}$
Element of	a∈A	Set membership	A= {3,9,14}, 3 ∈ A
Not element of	x∉A	No set membership	A= {3,9,14}, 1 ∉ A
Ordered pair	(a,b)	Collection of 2 e	lements
Cartesia n product	A×B	Set of all ordered A and B	d pairs from
cardinalit y	A or #A	The number of elements of set A	A= {3,9,14}, A =3
Set operat	tions		
Associativi	ty	(A∪B) ∪ C = (A∩B)∩C = A	` '
Commutativity		$A \cup B = B \cup A$ $A \cap B = B \cap A$	
Complementation		$A \cup Not(A) = U$ $A \cap Not(A) = \emptyset$	
Idempotence		AUA = A et A	Λ∩A
Identité		$A \cup \emptyset = A$ $A \cap U = A$	
Not publish	ned yet.	0	

Set operat	ions (cont)	
Extrémité	$A \cup U = U$ $A \cap \emptyset = \emptyset$	
Involution	Not(A) = A	
Morgan's la	aw $(Not(A \cup B)) = Not(A) \cap Not(B)$ $(Not(A \cap B)) = Not(A) \cup Not(B)$	
Distribuvité	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	
Languages	s - Definitions	
Formal	vocabulary + grammar rules	
language		
Monoid	Set having an internal binary operation (+,-,*/, U,) and having a neutral element ∈. Ex: ⟨E,+,∈⟩ means all strings of E will be concaneted with operator +	
Grammar	$(\text{Vn, Vt, P, S)} \text{ when:} \\ -\text{Vn is a finite non-empty set} \\ \text{whose elements are variables} \\ -\text{VT is a finite non-empy set of} \\ \text{terminal states} \\ -\text{Vn} \cap \epsilon = \varnothing \\ -\text{P is a finite set whose elements} \\ \text{are } \alpha -> \beta, \text{known as production} \\ \text{rules when } \alpha, \beta, \in (\text{Vn} \cup \epsilon)^* \text{ but } \alpha \\ \text{should contain at least 1 symbol} \\ \text{from Vn} \\ -\text{S is a start symbol, where S} \in$	

Element of a set. Ex for set A = {1, 2, 3}, 2 is an element

A finite and non empty set of

symbols

By Torvak cheatography.com/torvak/ Last updated 16th September, 2017. Page 1 of 2.

Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

Symbol

Alphabet

Sets | Languages & Automata Cheat Sheet by Torvak via cheatography.com/32041/cs/12709/

Languages	s - Definitions (cont)
Length of a string	Number of symbols in a string. Ex: for $w = aabbc$, $ w = 5$
Empty language	⊘ contains no string
Empty string	ϵ where $ \epsilon =0$
A ⁿ	Word of length ${\bf n}$ from the alpabet ${\bf A}$
A*	Words of finite length from the alphabet A or null (can be empty: $\epsilon)$
A ⁺	Words of finite length from the alphabet A and NOT NULL (no $\epsilon)$
Regular expressio n	Rercursive language, the rules of the expression must be indepent.Ex: $L1 = \{a^n n^{2n} n>=0, \ m>=0\} \ and$ $L2 = \{a^n b^m \mid n=2m\}$ Here L1 is regular and L2 is not Because in L2 there is a

Maths set re	eminders
N	{0,1,2,3,}
Z	{,-3,-2,-1,0,1,2,3,}
D	{d d is a nb. having a finite number of decimals }
Q	{ r r is a rational nb. that can be written as the quotien a/b of a real integer number a by a whole integer (not null) b}}
IR	$\{,\text{-3,-2,-1,0,}\chi,1,\sqrt{2},2,e,3,\\ \pi,\}$
Successive inclusions	$N \subset Z \subset D \subset Q \subset IR$

dependency between n and m

Automa	ata definiti	ons
DFA	has a is d	stic Finite Automata. A DFA leterministic because from e we are able to determine state.
NDFA	Non Deterministic Finite Automata. A NDFA is non deterministic because we can't always determiner determine which will be the next state from the present state.	
Operations on Languages		
Union		$LUM = \{x \mid x \in L \text{ or } x \in M\}$
Interse	ction	$L \cap M = \{x \mid x \in L \text{ and } x \in M\}$

Α*	and $x \notin L$ }
L∪Ø = L L∩Ø = L	

Identity of Regular Expressions

Complement on Comp(L) = $A \mid L = \{x \mid x \in A\}$

Difference(exclu $L\backslash M = \{x \mid x \in L \text{ and } x \notin M\}$

sion)

Ø + R = R
\emptyset .R = R. \emptyset = \emptyset
$\Lambda.R = R.\Lambda = R$
$\Lambda^* = \Lambda$ and $\varnothing^* = \Lambda$
R+R = R
R*R*=R*
$R.R^* = R.*R$
(R*)=R*
$\Lambda + R.R^* = R^* = \Lambda + R^*.R$
$(P.Q)^*P=P(Q.P)^*$
$(P+Q)^* = (P^*.Q^*)^* = (P^*+Q^*)^*$

Graph types		
Refle xif	All states have a loop, meaning $\delta(\text{state1, input}) = \text{state1}$	
Syme tric	All states have a direct way back , meaning: $\delta(A,x)=B \text{ and } \delta(B,y)=A$	

(P+Q).R=P.R+Q.R and R(P+Q)=R.P+R.Q

Grammar construction

Problem – Suppose : $L(Gr) = \{a^nb^mc^k \mid n >= 0, k > 1, m = n+k\}$ We have to find out the grammar Gr which produces L(Gr). Solution: Possible word $w = a^4b^9c^5$ We need to decompose b^9 : $w = a^4b^4b^5c^5$ Now we can define :

Now we can define:- S1 having the same number of a followed by the same number of b.

- S2 having the same number of b followed by the same number of a

So: S = S1 S2 S1 = a S1 b | Λ S2 = b S2 a | bbcc

Why **bbcc** as alternative to S2? Because in the case of a minimum word $\mathbf{w} = \mathbf{b^2c^2} = \mathbf{bbcc}$ because k > 1 so in this case we do have m = n+k = 0+2

C

By **Torvak** cheatography.com/torvak/

Not published yet.

Last updated 16th September, 2017.

Page 2 of 2.

Sponsored by **ApolloPad.com**Everyone has a novel in them. Finish Yours!

https://apollopad.com