Cheatography

acr review Cheat Sheet by tofu (tofu425) via cheatography.com/169049/cs/35385/

cellular respiration overview

stages glycolysis, pyruvate oxidation, krebs/citric acid cycle, electron transport/ oxidative phosphorylation

equation

toobondrial of

C6H12O6 + 6 O2 + 36 ADP → 6 CO2 + 6 H2O+ 36 ATP

MITOCI	HONDRIA	The Learning A
(ī)-		
Ŭ	98 7	
Granules	Bilcosome ATP Synthase Onrer memt Particle	Intermembrane space

do you know what the powerhouse of the cell is called

ins and outs		
glycolysis	in - 1 glucose, 2 NAD, 2 ATP, 4 ADP	
	out - 2 pyruvate, 2 NADH, 2 ATP (two consumed in phase one, four produced in phase two)	
pyruvate oxidation	in - 1 pyruvate, 1 NAD	
	out - 1 acetyl-CoA, 1 NADH, 1 CO2	
krebs/- citric acid cycle	in - 1 acetyl-CoA, 3 NAD, 1 FADH, 1 ADP	

out - 1 CoA (acetyl-CoA -> citric acid -> oxaloacetate; oxaloacetate reacts with another acetyl-CoA to form citric acid and repeat cycle), 3 NADH, 1 FADH, 1 ATP, 2 H2O, 1 CO2

for pyruvate oxidation and krebs cycle, the total number of products should be multiplied by two in order to calculate the number of products per glucose molecules because each process occurs once for each pyruvate formed in glycolysis

P structure	
-------------	--

AT

general rea	ctions in C	R		electi
glycolysis	phosph ory- lation	phosphate group is transferred		
	isomer ization	molecule is struct- urally rearranged		
	redox lysis/-	oxidation/reduction molecule is split into		
	cle- avage	two		notes
krebs cycle	phosphorylation			
	isomerization redox			
	decarb carboxyl group is			
	oxy- lation	removed from molecule; CO2 is produced		

and inorganic phosphate)

in glycolysis and krebs cycle, the type of phosphorylation that occurs is **substratelevel**. substrate-level phosphorylation occurs when a phosphate group is directly transferred from a substrate to another molecule. the other kind of phosphorylation, i.e. oxidative phosphorylation, is when a series of redox reactions leads to a final electron acceptor. this mode of phosphorylation occurs in the electron transportation.

electron transport chain

ATP consists of three phosphate groups, a five carbon sugar, and a nitrogenous base. The nature of this molecule is very unstable due to the negative charge of the three phosphate groups; the phosphates naturally want to break away from each other. When ATP is consumed for energy, the bond between the second and third phosphate are broken. This energy can then be used to power other (endergonic) reactions within the cell.

objective	create a proton gradient by moving hydrogen ions from the mitochondrial matrix to the intermembrane space to drive ATP synthesis
protein complexes	four protein complexes
	complex 3 collects electrons from complexes 1 & 2; complex 4 collects electrons from complex 3
electron shuttles	NAD(H): NAD is reduced to NADH in previous stages of CR; delivers electrons to complex 1 & 2

By tofu (tofu425) cheatography.com/tofu425/

Published 10th November, 2022. Last updated 10th November, 2022. Page 2 of 2. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com