
iproute2 Cheat Sheet
by TME520 (TME520) via cheatography.com/20978/cs/4067/

 Address management

In this section ${address} value should be a host address in dotted decimal format, and ${mask} can be either a dotted decimal subnet mask or
a prefix length. That is, both 192.0.2.10/24 and 192.0.2.1 0/2 55.2 55.255.0 are equally accept able.

Show all addres ‐
ses

ip address show All " sho w" commands can be used with " -4" or " -6" options to show only IPv4 or
IPv6 addresses.

Show addresses
for a single interf ‐
ace

ip address show ${inte rface name} ip address show eth0

Show addresses
only for running
interf aces

ip address show up

Show only
statically
configured
addres ses

ip address show [dev ${inte rface}] permanent

Show only
addresses learnt
via autoco nfi gur ‐
ation

ip address show [dev ${inte rface}] dynamic

Add an address to
an interf ace

ip address add ${addr ess }/$ {mask}
dev ${inte rface name}

ip address add
192.0.2.10/27 dev eth0

ip address add 2001:d b8: 1::/48 dev tun10

You can add as many addresses as you want. The first address will be primary and will be used as source address by default.

Add an address
with human- rea ‐
dable descri ption

ip address add ${addr ess }/$ {mask}
dev ${inte rface name} label ${inte ‐
rface name}: ${d esc rip tion}

ip address add
192.0.2.1/24 dev eth0
label eth0:m y_w an_ add ‐
ress

Interface name with a colon before label is required,
some backwards compat ibility issue.

Delete an address ip address delete ${addr ess }/$ {pr efix}
dev ${inte rface name}

ip address delete
192.0.2.1/24 dev eth0

Interface name argument is required. Linux does
allow to use the same address on multiple
interfaces and it has valid use cases.

Remove all
addresses from an
interf ace

ip address flush dev ${inte rface
name}

ip address flush dev eth1

Metasy ntactic variables are written in shell- style syntax, ${some thing}. Optional command parts are in square brackets. Note that there is no
way to rearrange addresses and replace the primary address. Make sure you set the primary address first.

 Route management

View all routes ip route ip route show

View IPv6 routes ip -6 route

View routes to a network and all its subnets ip route show to root ${addr ess }/$ {mask} ip route show to root 192.16 8.0.0/24

View routes to a network and all supern ets ip route show to match ${addr ess }/$ {mask} ip route show to match 192.16 8.0.0/24

View routes to exact subnet ip route show to exact ${addr ess }/$ {mask} ip route show to exact 192.16 8.0.0/24

By TME520 (TME520)
cheatography.com/tme520/
tme520.com

Published 10th May, 2015.
Last updated 7th May, 2016.
Page 1 of 11.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/tme520/
http://www.cheatography.com/tme520/cheat-sheets/iproute2
http://www.cheatography.com/tme520/
https://tme520.com
https://readable.com

iproute2 Cheat Sheet
by TME520 (TME520) via cheatography.com/20978/cs/4067/

 Route management (cont)

View only the route
actually used by the
kernel

ip route get ${addr ‐
ess }/$ {mask}

ip route get
192.16 8.0.0/24

Note that in complex routing scenarios like multipath routing, the result
may be " correct but not comple te", as it always shows one route that
will be used first.

View route cache
(pre 3.6 kernels
only)

ip route show cached Until the version 3.6, Linux used route caching. In older kernels, this command displays the
contents of the route cache. It can be used with modifiers described above. In newer kernels
it does nothing.

Add a route via
gateway

ip route add ${addr ‐
ess }/$ {mask} via ${next
hop}

ip route add
192.0.2.1 28/25
via 192.0.2.1

ip route add 2001:d b8: 1::/48 via 2001:d b8: 1::1

Add a route via
interf ace

ip route add ${addr ‐
ess }/$ {mask} dev
${inte rface name}

ip route add
192.0.2.0/25 dev
ppp0

Interface routes are commonly used with point- to- point interfaces like
PPP tunnels where next hop address is not required.

Change or replace a
route

ip route change
192.16 8.2.0/24 via
10.0.0.1

ip route replace 192.0.2.1/27 dev tun0

Delete a route ip route delete ${rest of
the route statem ent}

ip route delete
10.0.1.0/25 via
10.0.0.1

ip route delete default dev ppp0

Default route ip route add default via
${addr ess }/$ {mask}

ip route add
default dev
${inte rface name}

ip -6 route add default via 2001:d b8::1

Blac khole routes ip route add blackhole
${addr ess }/$ {mask}

ip route add
blackhole
192.0.2.1/32

Traffic to destin ations that match a blackhole route is silently discarded.

Other special routes
: unreac hable

ip route add unreac ‐
hable ${addr ess }/$ ‐
{mask}

 Sends ICMP "host unreac hab le". These routes make the system
discard packets and reply with an ICMP error message to the sender.

Other special routes
: prohibit

ip route add prohibit
${addr ess }/$ {mask}

 Sends ICMP " adm ini str atively prohib ite d".

By TME520 (TME520)
cheatography.com/tme520/
tme520.com

Published 10th May, 2015.
Last updated 7th May, 2016.
Page 2 of 11.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/tme520/
http://www.cheatography.com/tme520/cheat-sheets/iproute2
http://www.cheatography.com/tme520/
https://tme520.com
https://readable.com

iproute2 Cheat Sheet
by TME520 (TME520) via cheatography.com/20978/cs/4067/

 Route management (cont)

Other special
routes : throw

ip route add throw ${addr ess }/$ {mask} Sends "net unreac hab ‐
le".

Routes with
different
metric

ip route add ${addr ess }/$ {mask} via ${gateway} metric ${number} ip route add 192.16 ‐
8.2.0/24 via 10.0.1.1
metric 5

ip route add 192.16 ‐
8.2.0 dev ppp0 metric
10

Mult ipath
routing

ip route add ${addr ess s}/ ${mask} nexthop via ${gateway 1} weight
${number} nexthop via ${gateway 2} weight ${number}

ip route add default nexthop via 192.16 8.1.1 weight 1
nexthop dev ppp0 weight 10

As per the section below, if you set up a static route, and it becomes useless because the interface goes down, it will be removed and never get
back on its own. You may not have noticed this behaviour because in many cases additional software (e.g. Networ kMa nager or rp-pppoe) takes
care of restoring routes associated with interf aces.

 Link management

Show inform ation about all
links

ip link show ip link list

Show inform ation about
specific link

ip link show dev ${inte rface name} ip link show
dev eth0

ip link show dev tun10

Bring a link up or down ip link set dev ${inte rface name} [up |
down]

ip link set dev
eth0 down

ip link set dev br0 up

Set human- rea dable link
descri ption

ip link set dev ${inte rface name}
alias " ${d esc rip tio n}"

ip link set dev eth0 alias "LAN interf ace "

Rename an interf ace ip link set dev ${old interface name}
name ${new interface name}

ip link set dev
eth0 name lan

Note that you can't rename an active interface. You
need to bring it down before doing it.

Change link layer address
(usually MAC address)

ip link set dev ${inte rface name}
address ${addr ess}

ip link set dev eth0 address 22:ce: e0: 99: 63:6f

Change link MTU ip link set dev ${inte rface name} mtu
${MTU value}

ip link set dev tun0 mtu 1480

Delete a link ip link delete dev ${inte rface name}

Enable or disable multicast
on an interf ace

ip link set ${inte rface name} multicast
on

ip link set ${inte rface name} multicast off

Enable or disable ARP on
an interf ace

ip link set ${inte rface name} arp on ip link set ${inte rface name} arp off

By TME520 (TME520)
cheatography.com/tme520/
tme520.com

Published 10th May, 2015.
Last updated 7th May, 2016.
Page 3 of 11.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/tme520/
http://www.cheatography.com/tme520/cheat-sheets/iproute2
http://www.cheatography.com/tme520/
https://tme520.com
https://readable.com

iproute2 Cheat Sheet
by TME520 (TME520) via cheatography.com/20978/cs/4067/

 Link management (cont)

Create a VLAN
interf ace

ip link add name ${VLAN interface
name} link ${parent interface
name} type vlan id ${tag}

ip link add name
eth0.110 link eth0
type vlan id 110

The only type of VLAN supported in Linux is IEEE 802.1q
VLAN, legacy implem ent ations like ISL are not supported.

Create a QinQ
interface (VLAN
stacki ng)

ip link add name ${service interface} link ${physical interface} type vlan proto 802.1ad id ${service tag}

 ip link add name ${client interface} link ${service interface} type vlan proto 802.1q id ${client tag}

 ip link add name eth0.100 link eth0
type vlan proto 802.1ad id 100

 Create service tag interface

 ip link add name eth0.1 00.200 link
eth0.100 type vlan proto 802.1q id
200

 Create client tag interface

Create pseudo -et ‐
hernet (aka
macvlan) interf ‐
ace

ip link add name ${macvlan
interface name} link ${parent
interface} type macvlan

ip link add name peth0 link eth0 type macvlan

Create a dummy
interf ace

ip link add name ${dummy
interface name} type dummy

ip link add name dummy0 type dummy

Create a bridge
interf ace

ip link add name ${bridge name}
type bridge

ip link add name br0 type bridge

Add an interface
to bridge

ip link set dev ${inte rface name}
master ${bridge name}

ip link set dev eth0 master br0

Remove interface
from bridge

ip link set dev ${inte rface name}
nomaster

ip link set dev eth0 nomaster

Create a bonding
interf ace

ip link add name ${name} type
bond

ip link add name
bond1 type bond

This is not enough to configure bonding (link aggreg ation) in
any meaningful way. You need to set up bonding
parameters according to your situation.

By TME520 (TME520)
cheatography.com/tme520/
tme520.com

Published 10th May, 2015.
Last updated 7th May, 2016.
Page 4 of 11.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/tme520/
http://www.cheatography.com/tme520/cheat-sheets/iproute2
http://www.cheatography.com/tme520/
https://tme520.com
https://readable.com

iproute2 Cheat Sheet
by TME520 (TME520) via cheatography.com/20978/cs/4067/

 Link management (cont)

Create an interm ‐
ediate functional
block interf ace

ip link add ${inte rface name} type ifb ip link add ifb10 type ifb Interm ediate functional block devices are used
for traffic redire ction and mirroring in conjun ‐
ction with tc.

Create a pair of
virtual ethernet
devices

ip link add name ${first device name}
type veth peer name ${second
device name}

ip link add name veth-
host type veth peer name
veth-g uest

Virtual ethernet devices are created in UP state,
no need to bring them up manually after
creation.

Note that interface name you set with "name ${name }" parameter of "ip link add" and "ip link set" commands may be arbitrary, and even contain
unicode charac ters. It's better however to stick with ASCII because other programs may not handle unicode correctly. Also it's better to use a
consistent convention for link names, and use link aliases to provide human descri ptions.

 Link group management

Add an interface to a
group

ip link set dev ${inte rface
name} group ${group number}

ip link set dev eth0 group 42 ip link set dev eth1
group 42

Remove an interface
from a group

ip link set dev ${inte rface
name} group 0

ip link set dev ${inte rface} group default ip link set dev tun10
group 0

Assign a symbolic name
to a group

echo "10 custom er- vla ns" >>
/etc/i pro ute 2/g roup

Once you configured a group name, number and
name can be used interc han geably in ip commands.

ip link set dev eth0.100
group custom er- vlans

Perform an operation on
a group

ip link set group ${group
number} ${oper ation and
argume nts}

ip link set group 42 down ip link set group
uplinks mtu 1200

View inform ation about
links from specific group

ip link list group 42 ip address show group customers

Link groups are similar to port ranges found in managed switches. You can add network interfaces to a numbered group and perform
operations on all the interfaces from that group at once.

Links not assigned to any group belong to group 0 aka " def aul t".

Tun and Tap devices

Add an tun/tap device
useable by root

ip tuntap add dev ${inte rface name} mode
${mode}

ip tuntap add dev tun0 mode
tun

ip tuntap add dev tap9 mode
tap

Tap sends and receives raw
Ethernet frames.

 Tun sends and receives raw IP packets.

Add an tun/tap device
usable by an ordinary user

ip tuntap add dev ${inte rface name} mode
${mode} user ${user} group ${group}

ip tuntap add dev tun1 mode
tun user me group mygroup

ip tuntap add dev tun2 mode
tun user 1000 group 1001

By TME520 (TME520)
cheatography.com/tme520/
tme520.com

Published 10th May, 2015.
Last updated 7th May, 2016.
Page 5 of 11.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/tme520/
http://www.cheatography.com/tme520/cheat-sheets/iproute2
http://www.cheatography.com/tme520/
https://tme520.com
https://readable.com

iproute2 Cheat Sheet
by TME520 (TME520) via cheatography.com/20978/cs/4067/

Tun and Tap devices (cont)

Add an tun/tap device using an alternate
packet format

ip tuntap add dev ${inte rface name} mode ${mode}
pi

ip tuntap add dev tun1 mode tun pi

Add an tun/tap ignoring flow control ip tuntap add dev ${inte rface name} mode ${mode}
one_queue

ip tuntap add dev tun1 mode tun
one_queue

Delete tun/tap device ip tuntap del dev ${inte rface name} ip tuntap del dev tun0 name}

Tun and tap devices allow userspace programs to emulate a network device. When the userspace program opens them they get a file descri ‐
ptor. Packets routed by the kernel networking stack to the device are read from the file descri ptor, data the userspace program writes to the file
descriptor are injected as local outgoing packets into the networking stack.

Neighbor (ARP and NDP) tables management

View neighbor tables ip neighbor show

View neighbors for
single interf ace

ip neighbor show dev ${inte rface name} ip neighbor show dev eth0

Flush table for an interf ‐
ace

ip neighbor flush dev ${inte rface name} ip neighbor flush dev eth1

Add a neighbor table
entry

ip neighbor add ${network address} lladdr ${link layer address}
dev ${inte rface name}

ip neighbor add 192.0.2.1 lladdr 22:ce: e0: 99: ‐
63:6f dev eth0

Delete a neighbor table
entry

ip neighbor delete ${network address} lladdr ${link layer address}
dev ${inte rface name}

ip neighbor delete 192.0.2.1 lladdr 22:ce: e0: ‐
99: 63:6f dev eth0

For ladies and gentlemen who prefer UK spelling, this command family supports " nei ghb our " spelling too.

 Tunnel management

Create an IPIP tunnel ip tunnel add ${inte rface name} mode ipip local ${local endpoint address} remote ${remote endpoint address}

Create a SIT tunnel sudo ip tunnel add ${inte rface name} mode sit local ${local endpoint address} remote ${remote endpoint address}

Create an IPIP6 tunnel ip -6 tunnel add ${inte rface name} mode ipip6 local ${local endpoint address} remote ${remote endpoint address}

By TME520 (TME520)
cheatography.com/tme520/
tme520.com

Published 10th May, 2015.
Last updated 7th May, 2016.
Page 6 of 11.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/tme520/
http://www.cheatography.com/tme520/cheat-sheets/iproute2
http://www.cheatography.com/tme520/
https://tme520.com
https://readable.com

iproute2 Cheat Sheet
by TME520 (TME520) via cheatography.com/20978/cs/4067/

 Tunnel management (cont)

Create an IP6IP6 tunnel ip -6 tunnel add ${inte rface name} mode ip6ip6 local ${local endpoint address} remote ${remote
endpoint address}

Create a gretap (ethernet over GRE)
device

ip link add ${inte rface name} type gretap local ${local endpoint address} remote ${remote endpoint
address}

Create a GRE tunnel ip tunnel add ${inte rface name} mode gre local ${local endpoint address} remote ${remote endpoint
address}

Create multiple GRE tunnels to the
same endpoint

ip tunnel add ${inte rface name} mode gre local ${local endpoint address} remote ${remote endpoint
address} key ${key value}

Create a point- to- mul tipoint GRE
tunnel

ip tunnel add ${inte rface name} mode gre local ${local endpoint address} key ${key value}

Create a GRE tunnel over IPv6 ip -6 tunnel add name ${inte rface name} mode ip6gre local ${local endpoint} remote ${remote
endpoint}

Delete a tunnel ip tunnel del ${inte rface name} ip tunnel del gre1

Modify a tunnel ip tunnel change ${inte rface
name} ${opti ons}

ip tunnel change tun0 remote
203.0.1 13.89

ip tunnel change tun10
key 23456

View tunnel inform ation ip tunnel show ip tunnel show ${inte rface name} ip tun show tun99

Linux currently supports IPIP (IPv4 in IPv4), SIT (IPv6 in IPv4), IP6IP6 (IPv6 in IPv6), IPIP6 (IPv4 in IPv6), GRE (virtually anything in anything),
and, in very recent versions, VTI (IPv4 in IPsec).

Note that tunnels are created in DOWN state, you need to bring them up.

In this section ${local endpoint address} and ${remote endpoint address} refer to addresses assigned to physical interfaces of endpoint.
${address} refers to the address assigned to tunnel interface.

By TME520 (TME520)
cheatography.com/tme520/
tme520.com

Published 10th May, 2015.
Last updated 7th May, 2016.
Page 7 of 11.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/tme520/
http://www.cheatography.com/tme520/cheat-sheets/iproute2
http://www.cheatography.com/tme520/
https://tme520.com
https://readable.com

iproute2 Cheat Sheet
by TME520 (TME520) via cheatography.com/20978/cs/4067/

L2TPv3 pseudowire management

Create an
L2TPv3 tunnel
over UDP

ip l2tp add tunnel tunnel_id ${local tunnel numeric identi fier} peer_t unn el_id ${remote tunnel numeric identi fier} udp_sport
${source port} udp_dport ${dest ination port} encap udp local ${local endpoint address} remote ${remote endpoint address}

 ip l2tp add tunnel tunnel_id 1 peer_t unn el_id 1 udp_sport 5000 udp_dport 5000 encap udp local 192.0.2.1 remote 203.0.1 ‐
13.2

Create an
L2TPv3 tunnel
over IP

ip l2tp add tunnel tunnel_id ${local tunnel numeric identi fier} peer_t unn el_id {remote tunnel numeric identifier } encap ip
local 192.0.2.1 remote 203.0.1 13.2

Create an
L2TPv3 session

ip l2tp add session tunnel_id ${local tunnel identi fier} session_id ${local
session numeric identi fier} peer_s ess ion_id ${remote session numeric identi ‐
fier}

ip l2tp add session tunnel_id 1 session_id
10 peer_s ess ion_id 10

Delete an
L2TPv3 session

ip l2tp del session tunnel_id ${tunnel identi fier} session_id ${session identi fier} ip l2tp del session tunnel_id 1 session_id
1

Delete an
L2TPv3 tunnel

ip l2tp del tunnel tunnel_id ${tunnel identi fier} ip l2tp del tunnel tunnel_id 1

View L2TPv3
tunnel inform ‐
ation

ip l2tp show tunnel ip l2tp show tunnel
tunnel_id ${tunnel
identi fier}

ip l2tp show
tunnel
tunnel_id 12

By TME520 (TME520)
cheatography.com/tme520/
tme520.com

Published 10th May, 2015.
Last updated 7th May, 2016.
Page 8 of 11.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/tme520/
http://www.cheatography.com/tme520/cheat-sheets/iproute2
http://www.cheatography.com/tme520/
https://tme520.com
https://readable.com

iproute2 Cheat Sheet
by TME520 (TME520) via cheatography.com/20978/cs/4067/

L2TPv3 pseudowire management (cont)

View L2TPv3 session
inform ation

ip l2tp show
session

ip l2tp show session session_id ${session identi fier}
tunnel_id ${tunnel identi fier}

ip l2tp show session session_id 1
tunnel_id 12

Compared to other tunneling protocol implem ent ations in Linux, L2TPv3 termin ology is somewhat reversed. You create a tunnel, and then bind
sessions to it. You can bind multiple sessions with different identi fiers to the same tunnel. Virtual network interfaces (by default named l2tpethX)
are associated with sessions.

 Policy -based routing

Create a policy route ip route add ${route options} table
${table id or name}

ip route add 192.0.2.0/27 via
203.0.1 13.1 table 10

ip route add 2001:d b8::/48 dev
eth1 table 100

View policy routes ip route show table ${table id or
name}

ip route show table 100 ip route show table test

General rule syntax ip rule add ${options} <lookup ${table id or name}| bla ckh ole |pr ohi bit |un rea cha ble >
Create a rule to match a
source network

ip rule add from ${source network}
${action}

ip rule add from 192.0.2.0/24
lookup 10

ip -6 rule add from 2001:d b8::/32
prohibit

Create a rule to match a
destin ation network

ip rule add to ${dest ination network}
${action}

ip rule add to 192.0.2.0/24
blackhole

ip -6 rule add to 2001:d b8::/32
lookup 100

Create a rule to match a ToS
field value

ip rule add tos ${ToS value}
${action}

ip rule add tos 0x10 lookup 110

Create a rule to match a
firewall mark value

ip rule add fwmark ${mark} ${action} ip rule add fwmark 0x11 lookup 100

Create a rule to match
inbound interf ace

ip rule add iif ${inte rface name}
${action}

ip rule add iif eth0 lookup 10 ip rule add iif lo lookup 20

Create a rule to match
outbound interf ace

ip rule add oif ${inte rface name}
${action}

ip rule add oif eth0 lookup 10

Set rule priority ip rule add ${options} ${action}
priority ${value}

ip rule add from 192.0.2.0/25
lookup 10 priority 10

ip rule add from 192.0.2.0/24
lookup 20 priority 20

Show all rules ip rule show ip -6 rule show

Delete a rule ip rule del ${options} ${action} ip rule del 192.0.2.0/24 lookup 10

Delete all rules ip rule flush ip -6 rule flush

Policy -based routing (PBR) in Linux is designed the following way: first you create custom routing tables, then you create rules to tell the kernel
it should use those tables instead of the default table for specific traffic.

Some tables are predef ined: local (table 255), main (table 254), default (table 253).

netconf (sysctl config uration viewing)

View sysctl config uration for all interf aces ip netconf show

View sysctl config uration for specific interf ace ip netconf show dev ${inte rface} ip netconf show dev eth0

By TME520 (TME520)
cheatography.com/tme520/
tme520.com

Published 10th May, 2015.
Last updated 7th May, 2016.
Page 9 of 11.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/tme520/
http://www.cheatography.com/tme520/cheat-sheets/iproute2
http://www.cheatography.com/tme520/
https://tme520.com
https://readable.com

iproute2 Cheat Sheet
by TME520 (TME520) via cheatography.com/20978/cs/4067/

 Network namespace management

Create a namesp ace ip netns add ${name space name} ip netns add foo

List existing namesp aces ip netns list

Delete a namesp ace ip netns delete ${name space name} ip netns delete foo

Run a process inside a namesp ‐
ace

ip netns exec ${name space name} ${comm ‐
and}

ip netns exec foo /bin/sh

List all processes assigned to a
namesp ace

ip netns pids ${name space name} The output will be a list
of PIDs.

Identify process' primary
namesp ace

ip netns identify ${pid} ip netns identify 9000

Assign network interface to a
namesp ace

ip link set dev ${inte rface name} netns
${name space name}

ip link set dev ${inte rface
name} netns ${pid}

ip link set dev
eth0.100 netns foo

Connect one namespace to
another

Create a pair of veth devices: ip link add name veth1 type veth peer name veth2

 Move veth2 to namespace foo: ip link set dev veth2 netns foo

 Bring veth2 and add an address in " foo "
namespace:

ip netns exec foo ip link set dev veth2 up

 ip netns exec foo ip address add 10.1.1.1/24 dev veth2

 Add an address to veth1, which stays in the
default namespace:

ip address add 10.1.1.2/24 dev veth1

Monitor network namespace
subsystem events

ip netns monitor

Network namespaces are isolated network stack instances within a single machine. They can be used for security domain separa tion, managing
traffic flows between virtual machines and so on.

Every namespace is a complete copy of the networking stack with its own interf aces, addresses, routes etc. You can run processes inside a
namespace and bridge namespaces to physical interf aces.

VXLAN management

Create a
VXLAN link

ip link add name ${inte rface name} type vxlan id <0- 167 772 15> dev ${source
interface} group ${mult icast address

ip link add name vxlan0 type vxlan id 42 dev
eth0 group 239.0.0.1

VXLAN is a layer 2 tunneling protocol that is commonly used in conjun ction with virtua liz ation systems such as KVM to connect virtual machines
running on different hypervisor nodes to each other and to outside world. The underlying encaps ulation protocol for VXLAN is UDP.

By TME520 (TME520)
cheatography.com/tme520/
tme520.com

Published 10th May, 2015.
Last updated 7th May, 2016.
Page 10 of 11.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/tme520/
http://www.cheatography.com/tme520/cheat-sheets/iproute2
http://www.cheatography.com/tme520/
https://tme520.com
https://readable.com

iproute2 Cheat Sheet
by TME520 (TME520) via cheatography.com/20978/cs/4067/

 Multicast management

View
multicast
groups

ip maddress show ip maddress show ${inte rface name} ip maddress show dev lo

Add a link-
layer
multicast
address

ip maddress add ${MAC
address} dev ${inte rface
name}

ip maddress add 01:00: 5e: 00: 00:ab dev eth0

View
multicast
routes

ip mroute show Multicast routes cannot be added manually, so this
command can only show multicast routes installed by a
routing daemon.

It supports the same modifiers to
unicast route viewing commands (iif,
table, from etc.).

Multicast is mostly handled by applic ations and routing daemons, so there is not much you can and should do manually here. Multic ast -re lated
ip commands are mostly useful for debug.

 Network event monitoring

Monitor all
events

ip monitor

Monitor
specific
events

ip monitor ${event type} Event type can be: link, address, route, mroute, neigh.

Read a log
file produced
by rtmon

ip monitor ${event type} file
${path to the log file}

 iproute2 includes a program called " rtm on" that serves essent ially the same purpose, but
writes events to a binary log file instead of displaying them. "ip monito r" command allows you
to read files created by the progra m".

 rtmon [-family <in et| ine t6>]
[<r out e|l ink |ad dre ss| all >] file
${log file path}

 rtmon syntax is similar to that of "ip monito r", except event type is limited to link, address,
route, and all; and address family is specified in " -fa mil y" option.

You can monitor certain network events with iproute2, such as changes in network config ura tion, routing tables, and ARP/NDP tables.

By TME520 (TME520)
cheatography.com/tme520/
tme520.com

Published 10th May, 2015.
Last updated 7th May, 2016.
Page 11 of 11.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/tme520/
http://www.cheatography.com/tme520/cheat-sheets/iproute2
http://www.cheatography.com/tme520/
https://tme520.com
https://readable.com

	iproute2 Cheat Sheet - Page 1
	 Address management
	 Route management

	iproute2 Cheat Sheet - Page 2
	iproute2 Cheat Sheet - Page 3
	 Link management

	iproute2 Cheat Sheet - Page 4
	iproute2 Cheat Sheet - Page 5
	 Link group management
	Tun and Tap devices

	iproute2 Cheat Sheet - Page 6
	Neighbor (ARP and NDP) tables management
	 Tunnel management

	iproute2 Cheat Sheet - Page 7
	iproute2 Cheat Sheet - Page 8
	L2TPv3 pseudowire management

	iproute2 Cheat Sheet - Page 9
	 Policy-based routing
	netconf (sysctl configuration viewing)

	iproute2 Cheat Sheet - Page 10
	 Network namespace management
	VXLAN management

	iproute2 Cheat Sheet - Page 11
	 Multicast management
	 Network event monitoring

