Cheatography

GDB - Gnu Debugger - Initiation

gdb -q ./<file> Start GDB in quiet mode

gdb -p <pid> Attach to process-id

gdb -c <core>
J<file>

Load up a core file and
the program

Those commands are executed to start

GDB - Commands - Run a program

IO
o)
e

run r Start the program
run r Start with an
testarg testarg argument

GDB - Commands - Registers

info registers ir Show default
registers

info registers ira Show all registers

all

info registers ir Show EAX register

eax eax

Commands for showing the content of
registers.

GDB - Commands - Examine

x $eax Examine address in EAX

x/i $esp Examine address at ESP
interpret as instruction

x/s Examine address interpret as

Oxffffffab string

x/4s Print from that address 4

Oxffffffab times

x/4xb Examine in HEX repeat 4
times show in Bytes

disass- Disassemble at current

emble / position

disas

disas _start Disassemble from label _start

By therealdash

cheatography.com/therealdash/

x86_ 32 Shellcode-Lab Cheat Sheet
by therealdash via cheatography.com/196544/cs/41321/

GDB - Commands - Examine (cont)

print/ p Print address of libc

system system

Note: Examine needs valid addresses to
function. Unit sizes: b, Bytes; h, Halfwords
(two bytes);w, Words (four bytes); g, Giant
words (eight bytes).

GDB - Commands - Breakpoint

break b _start Set a breakpoint at
_start the label _start
break 5 b5 Breakpoint at

source line 5
break b Breakpoint at
*0x443- *0x443- address/offset
32211 32211

GDB - Commands - Stepping

step s Step per line of source.

stepi si Step per machine instru-

ction

continue c¢ Continue program

execution

GDB - Commands - Set and Call

call (int) mprotect(- Execute

OxDEADBEEF, mprotect() in
0x1000, 1) debugee context.
call strcpy(Oxdea- Write hacky to
dbeef, "hacky") addr Oxdeadbeef

set follow-fork-mode
child

set (char [SIZE])
Oxdeadbeef = "my_-
new_array"

set {int}0xdeadbeef =
4

set $eax =
Oxdeadbeef

Follow newly
created childs

Write data to
address

Set value at
address to 4

Set value of
register EAX to
Oxdeadbeef

Not published yet.

Last updated 16th November, 2023.

Page 1 of 2.

GDB-GEF - Overview

gdb-gef

gef help
start

kill
context ctx

checksec

vmmap

python-in- pi
teractive
python-in- pi
teractive 23*5
23*5

Start gdb-gef at
commandline

Show help of GEF

Start program with
auto breakpoints set

Kill current process
Show context

Check security
features

Show virtual
memory map

Start Python Interp-

reter

Use python interp-
reter and calculate

GDB-GEF - Configuration

gef config

gef config context

gef config context.show-

_opcode_size 8

gef config context.layout

"legend regs stack
memory"

gef save

Show running
configuration
Configure GEF
context

Set the opcode
output to length
of 8

Set only for
widgets as
output

Save running
configuration

Extra configurations for GDB-GEF

GCC - Overview

gcc -m32 <input> -0
<output>

gcc -m32 <input> -0
<output> -z execstack
gcc -m32 <input> -0
<output> -g

Compile source
for x86_32 arch.
Compile with
executable stack
Compile with
debug symbols

Sponsored by Readable.com

Measure your website readability!

https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/therealdash/
http://www.cheatography.com/therealdash/cheat-sheets/x86-32-shellcode-lab
http://www.cheatography.com/therealdash/
https://readable.com

x86_ 32 Shellcode-Lab Cheat Sheet
by therealdash via cheatography.com/196544/cs/41321/

Student Files (cont)

nasm -f elf32 <in- Creates x86_32 object exploits/ Exploits shellcode is ran against

Cheatography

NASM - Overview

put>-o <output>.0 file from assembly. tools/ Support tools for the training

Id -m elf_i386 <in- Create x86_32 ELF
put>.0 -0 <output> from object file

OBJDUMP - Overview

objdump -d -M
intel <file>

Dump the opcodes in
Intel Syntax

objdump -s -j <se- Dump only named
ction> <file> section

STRACE - Overview

strace <filename> Starts program and
tracing it

strace -p <pid> Attaches at process-
id

strace -o log.txt <fi- ~ Writes output into a
lename> logfile

strace -f <filename> Also log child
processes

pwn asm nop Write NOP opcode

pwn asm nop Write NOP and MOV

'mov eax, 1' opcode

pwn asm -f Outputs in \x Notation
string nop

pwn disasm Output the disassembly
909090 of three NOPs

PERL - Basics for exploits

perl -e {print "A"x"1- Print 1024 times
024"} A

Student Files

lessons/ Assembler files, aimed at
teaching x86_32 basics

shellcode/ Collection of bad shellcodes,
students have to improve

skeletons/ Skeleton Code files

By therealdash

cheatography.com/therealdash/

Not published yet.

Last updated 16th November, 2023.

Page 2 of 2.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/therealdash/
http://www.cheatography.com/therealdash/cheat-sheets/x86-32-shellcode-lab
http://www.cheatography.com/therealdash/
https://readable.com

	x86_32 Shellcode-Lab Cheat Sheet - Page 1
	GDB - Gnu Debugger - Initiation
	GDB-GEF - Overview
	GDB - Commands - Breakpoint
	GDB - Commands - Run a program
	GDB - Commands - Registers
	GDB - Commands - Stepping
	GDB-GEF - Config­uration
	GDB - Commands - Examine
	GDB - Commands - Set and Call
	GCC - Overview

	x86_32 Shellcode-Lab Cheat Sheet - Page 2
	NASM - Overview
	OBJDUMP - Overview
	STRACE - Overview
	PWNtools
	PERL - Basics for exploits
	Student Files

