Cheatography

Tahsili Physics (States Of Matter) Cheat Sheet by TheGoldenClover via cheatography.com/201551/cs/42768/

Thermal Energy

Thermal Energy	total energy of molecules in a substance	
thermal energy is proportional to the no. of molecules		
Total Energy	the sum of the potential and kinetic energies	
Temper- ature	the average kinetic energy of molecules in matter	
Thermal equilibrium	a state in which two substances have the same temperature	
Transm- ission of Thermal Energy	conduction - convection - radiation	
Calorimeter	an object used to measure the heat of chemical and physcial reactions	
Internalisation Frances in Fluids		
Intermolecular Forces in Fluids		

Intermolecular Forces in Fluids		
Interm- olecular Forces	Forces between molecules	
Cohesive Force	Attractive forces between molecules of the same type, such as surface tension	
Surface Tension	the property of the surface of a liquid that allows it to resist external forces	
Adhesive Forces	Forces of attraction between a liquid and a solid, such as capillarity	

Intermolecular Forces in Fluids (cont)				
Applic- ations of Capill- arity	clothes absorbing water, and water moving up stems to leaves			
Pascale's Principle	states that, in a fluid at rest in a closed container, a pressure change in one part is transm- itted without loss to every portion of the fluid and to the walls of the container.			
Applic- ation of Pascale's Principle	Hydraulic Lift			
thermo- couple	a sensor that detects temp			
Specific Heat				
Specific Heat	The amount of heat energy required to raise one kg of matter by 1 degree C			
Transferred Heat Energ Formula				
latent heat of fusion	the amount of heat energy required to melt 1 kg of a substance			
latent heat				
of fusion formula	Q = mHf (Hf = heat of fusion)			
01.1001011	fusion)			
formula Latent Heat Of Vapori-	fusion) the amount of heat energy required to evaporate 1 kg of a substance			

Buoyant Force and Liquid Pressure

,		
Fluid's Pressure	P = ρ gh (ρ = density, g = 9.8, h = height)	
Archim- edes' principle	states that a body immersed in a fluid is subjected to an upward force equal to the weight of the displaced fluid	
Buoyant Force	the force acting on an object opposite to gravity by a fluid in which it is submerged, opposing the weight	
Buoyant Force Formula	$F = \rho(fluid)Vg$	
applic- ations of the buoyant force	ships, submarines	
Viscosity	a measure of an object's resistance to flow	
Bernoulli's principle	states that in horizontal fluids, the higher the velocity, the lower the pressure	
applic- ations of bernoulli's principle	spry paint, perfume atomizer	
Solid Expansion	a change in the length, width, or height of a solid	
same depth = same pressure		

By TheGoldenClover

Published 18th March, 2024. Last updated 18th March, 2024. Page 1 of 2. Sponsored by Readable.com Measure your website readability! https://readable.com

cheatography.com/thegoldenclover/

Cheatography

Thermodynamics		
The First Law Of Thermo- dynamics	E = Q - W	
The Second law Of Thermodyn- amics	the law of entropy	
Entropy	The measure of a system's useless thermal energy, or disorder	
Entropy Formula	$\Delta S = Q/T$	
Heat Engine	a device that converts thermal energy into work	
Efficiency of a Heat Engine	Eff = W/Qh or Eff = (Qh - Qc / Qh)	
Heat engine energy relations	Qh = W + Qc	
Density	density = m/V	
Pressure	P = F/A	

By TheGoldenClover

Published 18th March, 2024. Last updated 18th March, 2024. Page 2 of 2. Sponsored by Readable.com Measure your website readability! https://readable.com

cheatography.com/thegoldenclover/