Cheatography

Tahsili Chemistry (Reaction Rates and Equilibrium) Cheat Sheet by TheGoldenClover via cheatography.com/201551/cs/42788/

Rate Of Reaction

Rate	- $\Delta Reactants / \Delta t = \Delta products / \Delta t$	
Reactants are <i>negative</i>		
Collision Theory	states that particles must collide for a reaction to occur, and must have the right orientation and enough energy	
Activated Complex	a complex that exists very briefly in the time between the breaking down of reactants and forming of products	
Activation Energy	the minimum amount of energy needed to form the activated complex	
Exothermic Reaction	a reaction that releases energy; the products end up having less energy that the reactants	
Endoth- ermic reaction	a reaction that must absorb enough energy to overcome the energy barrier; the products have more energy at the end	
Factors that affect the rate	catalysts - the nature of the substances - Concen- tration - Surface Area - Temperature	

Factors Affecting Equilibrium (cont)

Effects of	Higher pressure + lower volume = lower number
Changing	of moles; lower pressure + higher volume =
Pressure and	more moles
Volume	

if the number of moles are equal on both sides, pressure and volume will have no effect

Rate Law			
Rate Law	$R = k \left[A\right]^{X} \left[B\right]^{y}$		
Order of the reaction	x+y		
Rate Constant (k)	is only affected by temp		
Rate Constant Units	$\rm s^{-1}$, L/mol.s , L^2/mol^2.s		
A and B are the molar concentrations of reactants; the rate is directly			
proportional to the concentrations			
the coefficients are the components			

the coefficients are the exponents

Factors	Affecting	Equilibrium	

Character- istics of equilibrium	1- fixed ratio, 2- closed system, 3-fixed temp, 4- dynamic equilibrium
Le Chatelier's Principle	a change in one variable that describes a system produces a shift in the position of the equilibrium, countering the change
Effects of Changing Concentra- tion:	higher reactant concentration = reaction shifts to the right, and vice versa
Effects of Changing Temperature	adding heat to and exothermic reaction = more reactants; adding heat to an endothermic reaction = more products

Reversible Reactions and Equilibrium		
Complete Reaction	when reactants change to products (\rightarrow)	
Reversible reaction	can go both ways (与)	
Equilibrium	when the rate of the forward reaction equals the rate of the backwards one	
Chemical Equilibrium Law	states that at a certain temperature, the ratio of the reactants and products can remain constant	
for aA + bB = cC +dD		
Chemical Equilibrium Law Formula	$K eq = [C]^{c}[D]^{d} / [A]^{a}[B]^{b}$	
	roducts have a higher concentration, if K eq < 1 the higher concentration	
Homoge- neous Equili- brium	when the reactants and products are in the same state of matter	
Hetero- geneous Equilibrium	when the reactants and products are in multiple states (the pure solid and liquids are removed from the equation)	
0004		

By TheGoldenClover

Published 20th March, 2024. Last updated 20th March, 2024. Page 1 of 2. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

cheatography.com/thegoldenclover/

Cheatography

Temperature and The Equilibrium Constant				
K eq is directly propor- tional to temp id the equation is:	endothermic			
K eq is inversely proportional to temp id the equation is:	exothermic			
catalyst	increases the speed at which a reaction reaches equilibrium, but does not change the equilibrium			
K sp = solubility product constant				
Q sp = ionic product				
if K sp > Q sp	unsaturated, no precipitate			
if K sp = Q sp	if K sp = Q sp saturated, no precipitate			
if K sp < Q sp saturated, precipitate is formed		ed		
Temperature and The Equilibrium Constant				
K eq is directly proportion	nal to temp id the equation is:	endoth- ermic		
K eq is inversely proport	onal to temp id the equation	exothermic		

С

is:

By TheGoldenClover

Published 20th March, 2024. Last updated 20th March, 2024. Page 2 of 2. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

cheatography.com/thegoldenclover/