Moles	
Avogadro's number	6.02×10^{23}
Molar Mass	the mass of one mol of a substance
Gas Laws	
Boyle's Law (Constant Temp)	$\mathrm{P} 1 \mathrm{~V} 1=\mathrm{P} 2 \mathrm{~V} 2$
Graph Shape	a decreasing curve
Charle's Law (Constant Pressure)	$\mathrm{V} 1 / \mathrm{T} 1=\mathrm{V} 2 / \mathrm{T} 2$
Graph Shape	an increasing line
Gay-Lussac's Law (Constant Volume)	$\mathrm{P} 1 / \mathrm{T} 1=\mathrm{P} 2 / \mathrm{T} 2$
Graph Shape	an increasing line
General Law	$\mathrm{P} 1 \mathrm{~V} 1 / \mathrm{T} 1=\mathrm{P} 2 \mathrm{~V} 2 / \mathrm{T} 2$
Ideal Gas Law	$\mathrm{PV}=\mathrm{nRT}(\mathrm{R}=0.082)$
Standard Conditions (STP)	temp $=273 \mathrm{~K} / 0 \mathrm{C}$ and $\mathrm{P}=1 \mathrm{~atm}$
Avogadro's Principle	equal volumes of gases have equal number of particles at the same temp and pressure

Chemical Potential Energy and Heat (cont)
Hess's law \quadstates that regardless of the multiple stages, the total enthalpy change is the sum of all the changes Standard \quadThe change in heat content when 1 mol of compound heat of formed from its elements in standard conditions formation endothermic = positive $=$ cold reactions exothermic = negative = warm reactions the heat of formation in standard conditions $=0$

Empirical and Molecular Formulas	
Percent composition of A in AB	(Mass of $\mathrm{A} /$ Mass of AB) $\times 100 \%$
Empirical Formula	The simplest whole number ratio of atoms (Ex: CH)
Molecular Formula	The actual number of atoms in a molecule (Ex: C6H6)
N whole Number	N molecular formula mass / empirical formula mass
Hydrated Salts	salts with water molecules in it's crystals
when hydrated salts are heated, they lose their water	

Chemical Potential Energy and Heat	
Chemical Potential Energy	the stored energy in the structure of matter
Heat	the energy transferred between objects (Joules)
Calorie	the amount of energy required to raise 1 gram of water by 1 degree C
Heat Content (H)	the amount of stored heat energy per mol under constant pressure
Change in Heat Content / Enthalpy ($\Delta \mathrm{H}$)	the energy absorbed or released in a reaction
Enthalpy Formula	$\Delta \mathrm{H}=\mathrm{H}$ (products) - H (reactants)
$\begin{aligned} & \mathrm{H} \text { (products) }<\mathrm{H} \text { (react- } \\ & \text { ants) } \end{aligned}$	the reaction is exothermic, and will have a negative value
H (products) $>\mathrm{H}$ (reactants)	the reaction is endothermic, and will have a positive value

| Calculations In Gases |
| :--- | :--- |
| Limiting the substance that is used up completely
 Reactant
 Excess the substance that is not used up and remains after
 Reactant the reaction
 Theoretical the largest amount of product that can be produced
 yield
 Actual Yield the amount produced by the experiment
 Percent Yield $=$ (actual yield $/$ theoretical yield) $\times 100$ |

Kinetic Molecular Theory of Gases

a gas is comprised of molecules whose average distance between each other is greater than the size of its particles

The particles of a gas exert no attractive forces on each other or the container
The particles are in constant random motion
The KE of a particle depends on its mass and velocity

Published 12th March, 2024.
Last updated 12th March, 2024.
Page 1 of 2.

[^0]cheatography.com/thegoldenclover/

Gas Behavior	
Diffusion	the movement of particles from areas of high concentration to areas of low concentration
Graham's Law of Diffusion	Rate1 $/$ Rate2 $=\sqrt{ }($ molar mass $2 /$ molar mass 1$)$
Flowing	the movement of gases through small holes
Pressure	
Pressure	the force applied perpendicularly to the surface of an object per unit area
SI unit	Pascal ($\mathrm{N} / \mathrm{m}^{2}$)
Barometer	measures atmospheric pressure
Manometer	measures the pressure of a trapped gas
Dalton's Law of partial pressure	the total pressure of a mixture of gases is equal to the sum of the individual pressures

By TheGoldenClover
Published 12th March, 2024.
Last updated 12th March, 2024.
Page 2 of 2.

Sponsored by Readable.com Measure your website readability! https://readable.com

[^0]: Sponsored by Readable.com
 Measure your website readability!
 https://readable.com

