Cheatography

Tahsili Chemistry (Chemical Calculations) Cheat Sheet by TheGoldenClover via cheatography.com/201551/cs/42700/

Moles	
Avogadro's number	6.02 x 10 ²³
Molar Mass	the mass of one mol of a substance
Gas Laws	
Boyle's Law (Constant Temp)	P1V1 = P2V2
Graph Shape	a decreasing curve
Charle's Law (Constant Pressure)	V1/T1 = V2/T2
Graph Shape	an increasing line
Gay-Lussac's Law (Constant Volume)	P1/T1 = P2/T2
Graph Shape	an increasing line
General Law	P1V1/T1 = P2V2/T2
Ideal Gas Law	PV = nRT (R = 0.082)

Conditions (STP)	
Avogadro's	equal volumes of gases have equal number of
Principle	particles at the same temp and pressure

temp = 273 K / 0 C and P = 1 atm

Chemical Potential Energ	y and Heat
Chemical Potential Energy	the stored energy in the structure of matter
Heat	the energy transferred between objects (Joules)
Calorie	the amount of energy required to raise 1 gram of water by 1 degree C
Heat Content (H)	the amount of stored heat energy per mol under constant pressure
Change in Heat Content / Enthalpy (ΔH)	the energy absorbed or released in a reaction
Enthalpy Formula	$\Delta H = H \text{ (products)} - H \text{ (reactants)}$
H (products) < H (react- ants)	the reaction is exothermic, and will have a negative value
H (products) > H (react- ants)	the reaction is endothermic, and will have a positive value

Chemical Pote	ential Enerç	gy and Heat (cont)
Hess's law	states tha enthalpy	at regardless of the multiple stages, the total change is the sum of all the changes
Standard heat of formation	The chan is formed	ge in heat content when 1 mol of compound from its elements in standard conditions
endothermic =	= positive =	cold reactions
exothermic =	negative =	warm reactions
the heat of for	mation in s	standard conditions = 0
Empirical and	Molecular	Formulas
Percent comp A in AB	osition of	(Mass of A / Mass of AB) x 100%
Empirical Forr	nula	The simplest whole number ratio of atoms (Ex: CH)
Molecular For	mula	The actual number of atoms in a molecule (Ex: C6H6)
NL		N = molecular formula mass / ampirical

when hydrated salts are heated, they lose their water

Hydrated Salts

Calculations In (Gases
Limiting Reactant	the substance that is used up completely
Excess Reactant	the substance that is not used up and remains after the reaction
Theoretical yield	the largest amount of product that can be produced
Actual Yield	the amount produced by the experiment
Percent Yield	= (actual yield / theoretical yield) x 100

formula mass

salts with water molecules in it's crystals

Kinetic Molecular Theory of Gases

a gas is comprised of molecules whose **average distance** between each other is **greater than the size of its particles**

The particles of a gas exert no attractive forces on each other or the container

The particles are in constant random motion

The KE of a particle depends on its mass and velocity

С

Standard

By TheGoldenClover

Published 12th March, 2024. Last updated 12th March, 2024. Page 1 of 2. Sponsored by **Readable.com** Measure your website readability! https://readable.com

cheatography.com/thegoldenclover/

Cheatography

Diffusion	the movement of particles from areas of high concentration to areas of low concentration
Graham's Law of Diffusion	Rate1 / Rate2 = $\sqrt{(molar mass 2 / molar mass 1)}$
Flowing	the movement of gases through small holes
Droceuro	
Flessule	
Pressure	the force applied perpendicularly to the surface of an object per unit area
Pressure SI unit	the force applied perpendicularly to the surface of an object per unit area Pascal (N/m ²)
Pressure SI unit Barometer	the force applied perpendicularly to the surface of an object per unit area Pascal (N/m ²) measures atmospheric pressure
Pressure SI unit Barometer Manometer	 the force applied perpendicularly to the surface of an object per unit area Pascal (N/m²) measures atmospheric pressure measures the pressure of a trapped gas

partial pressure to the sum of the individual pressures

By TheGoldenClover

Published 12th March, 2024. Last updated 12th March, 2024. Page 2 of 2. Sponsored by Readable.com Measure your website readability! https://readable.com

cheatography.com/thegoldenclover/