

Discrete Exam 1 Cheat Sheet by TheEmuoo1 via cheatography.com/30732/cs/9211/

Useful Symbols for all (universal operator) \exists exists (existential operator) in the set and Λ or not equivalent \subset subset \supset superset {}, empty set 0 biconditional (both are true)

Statements	
Universal	For all, for each
Existential	At least, there exists
Conditional	$\text{If} \rightarrow \text{then}$
Universal Conditional	For all & if- then
Universal Existential	For all & there exists
Existential Universal	There exists & for all

Universal	for all		F
List of Equi	valences		F
Condit- ional Statemnts	p→q≡ _{(p∧} q)	p→q≡~pV	
contra- positive	$p \rightarrow q \equiv_{q \rightarrow} p$		_
Converse	p→q (cond)	q→p (converse	c (2)

List of Equivalences (cont) inverse $p \rightarrow q$ $p \rightarrow p$ (cond) (inverse) vacuously true = true by

vacuously true = true by absence converse and inverse are the SAME

Set-Builder Notation

Elements/ Belongs to Such that variables $\{x \in D \mid P(x)\}$

Set-Roster Notation
A = {1, 2, 3 100}
use ellipses for larger sets
Subsets
B⊆A B=subset, A=superset
Proper Subsets: elements that

belong to superset but NOT

	subset			
	Relations			
	Relations=	subsets of		
		cartesian product		
	$R \subseteq A \times B$	Relation ⊆ Domain		
V	q	x Codomain		
	Domain	SET that includes		
		every element		
		from source		
	don't always have to include			
	ordered pairs			

Functions

Requirements:

- Arrow coming out of every element in domain
- Every element can only have one element of *domain* connected to one element of *codomain*

unsatisfied requirement = relation

y can be used repeatedly but x values only have one arrow coming out

ates and Quantified

Statement	originai	negated
type		
Universal	∀x∈D, P(x)	∃x∈D, ~P(x)
Existential		

Universal Conditional

DeMorgan's Law

• Tells us how to handle conjunction and disjunction negations $(p \land q) \equiv PV \sim q$

 $(p \lor q) \equiv p \land \sim q$

"The connector is loose(I) or the machine is unplugged(u)"

 $I \lor u -- negation --> (I \lor u) \equiv I$

∧~u

"The connector is **not** loose *and* the machine is **not** unplugged"

pvq is the opposite of $p\Lambda^q$

When using DeMorgan's law, no need for truth table

Tautologies and Contradictions

Tautol-	Always true	t
ogies	statements	
Contra-	Always	С
dictions	false	
	statements	
p∧~p ≡c	T∧F≡c	F∧T≡F
p∨t≡t	р∧ с≡с	

Absorption law: variable absorbing operator
⇒use truth table to prove law
⇒other variables don't play a role in statement validity
pv(p∧q)≡ p; p∧(p∨q)≡ p

p→q truth table

Truth Table for $p \rightarrow q$			
р	q	$p \rightarrow q$	
T	T	T	
T	F	F	
F	T	T	
F	F	T	

Argument Truth Table

						prem	ises	conclusion
р	q	r	~r	$q \lor \sim r$	$p \wedge r$	$p \rightarrow q \vee \sim r$	$q \rightarrow p \wedge r$	$p \rightarrow r$
T	T	T	F	T	T	T	T	T
T	T	F	T	T	F	T	F	
T	F	T	F	F	T	F	T	
T	F	F	T	T	F	T	T	F /
F	T	T	F	T	F	T	F	
F	T	F	T	T	F	T	F	
F	F	T	F	F	F	т	T	T
F	F	F	T	T	F	T	T	T

Critical row = row where both premises are true premises and conclusion = TRUE is a valid argument

Arguments

$p{\rightarrow}q$	major premise		
р	minor premise		
∴q	therefore, conclusion		
premises aka assumptions or			
hypotheses			
verified using truth table			

C

By TheEmu001

Not published yet.

Last updated 21st September, 2016.

Page 1 of 2.

Sponsored by **ApolloPad.com**Everyone has a novel in them. Finish Yours!

https://apollopad.com

Discrete Exam 1 Cheat Sheet by TheEmu001 via cheatography.com/30732/cs/9211/

Argument Forms (VALID)	
Modus Pones	p→q
	р
	∴q
Modus Tollens	$p{\rightarrow}q$
	~q
	∴~p
Gneralization	р
	∴p∨q
Specialization	pΛq
	∴q
Elimination	pvq
	~q
	∴p
Transitivity	$p{\rightarrow} q$
	q→r
	∴p→r
Proof by div. into cases	pvq
	p→r
	q→r
	∴r

Fallacy (INVALID ARGUMENTS)	
Converse Error	p→q
	q
⇒	∴р
Inverse Error	q→p
	~p
	∴~q

C

By TheEmu001

cheatography.com/theemu001/

Not published yet. Last updated 21st September, 2016. Page 2 of 2. Sponsored by **ApolloPad.com**Everyone has a novel in them. Finish Yours!

https://apollopad.com