Cheatography

Discrete Exam 1 Cheat Sheet by TheEmu001 via cheatography.com/30732/cs/9211/

List of Equivalences			Statements (cont)			Subsets			Tautologies and Contradictions		
Condition	na p→q≡^ (p∧~q)		Universal Existential	For a	II & there exists	B⊆A		ubset, uperset	Tautologies	Always true statements	t
Statemn	ts		Existential Unive	rsal There	e exists & for all	Proper	r Subs	sets:	Contradictio	Always false	С
contraposi p→q≡∼q→~p tive			Functions				elements that belong to superset but NOT		ns	statements	
	converse p→q q→p		Requirements:				subset		p∧~p≡c	T∧F≡ c	F∧T≡
	(cond) (converse)		- Arrow coming out of every element in domain				pvt≡t	p∧ c≡c			
inverse					Relations		Absorption law: variable absorbing operator				
(cond) (inverse) vacuously true = true by absence converse and inverse are the			- Every element can only have one element of <i>domain</i> connected to one element of <i>codomain</i>			Relatio	ons=	subsets of cartesian product	⇒use truth table to prove law ⇒other variables don't play a role in statement validity		
SAME			unsatisfied requirement = relation y can be used repeatedly but x values only have one arrow coming out			R ⊆ A x B	Relation ⊆ Domain x Codomain	pv(p∧q)≡ p; p∧(pvq)≡ p			
Useful Symbols								p→q truth ta	able		
		rsal operator) ential operator)	Predicates and		Statements	Domain	in	SET that		Truth Table for $p \rightarrow q$ $p q p \rightarrow q$ T T T T	
∈ ir	in the set		Statement original negated type					every	T T T T F F F T T		
۸ a	nd		Universal	∀x∈D, P(x)	∃x∈D,			element from		F F T	
V O	r				~P(x)			source			
	~ not		Existential		don't always have to		Argument Truth Table				
	equivalent		Universal Conditional		include	include ordered pairs		$\begin{array}{c cccc} premises & conclusion \\ \hline p & q & r & \neg r & q \lor \neg r & p \to r & \hline p \to q \lor \neg r & q \to p \to r & \hline \end{array}$			
			Set-Builder Notation			DeMorgan's Law		$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			
	uperset				Tells us how to		$\left[\begin{array}{c c c c c c c c c c c c c c c c c c c $				
v, e Ø	empty set		Elements/ Belongs to Such that variables			handle conjunction and disjunction negations		P F F T T F T T T			
⇔ b	↔ biconditional (both are true)							Critical row = row where both premises are			
Statome	nte		{x ∈ D P(x)}				~(p∧q) ≡ ~p∨~q ~(p∨q) ≡ ~p∧~q		true premises and conclusion = TRUE is a valid		
Statements			set			"The connector is		argument			
Universal For all, for each		Domain(set) Predicate				loose(I) or the machine is unplugged(u)"		Arguments			
Existential		At least, there				lvu	I v u negation> ~(I				
		exists	Set-Roster Nota	otation		$v u) \equiv ~l \wedge ~u$ "The connector is not				najor premise	
Conditional		$f \rightarrow then$	A = {1, 2, 3 10	0}	}		loose and the machine			nerefore, conclusion	
Universal For all & if-then Conditional		For all & if-then	use ellipses for larger sets		~pvqi	is not unplugged" ~pvq is the opposite of			a assumptions or hype	otheses	
				p∧~q				9			
				When using DeMorgan's law, no need for truth table							

By TheEmu001

cheatography.com/theemu001/

Not published yet. Last updated 21st September, 2016. Page 1 of 2. Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

Cheatography

Discrete Exam 1 Cheat Sheet by TheEmu001 via cheatography.com/30732/cs/9211/

Argument Forms (VALID)			
Modus Pones	p→q		
	р		
	∴q		
Modus Tollens	p→q		
	~q		
	∴~p		
Gneralization	р		
	∴pvq		
Specialization	рлq		
	∴q		
Elimination	pVq		
	~q		
	∴p		
Transitivity	p→q		
	q→r		
	∴p→r		
Proof by div. into cases	pvq		
	p→r		
	q→r		
	∴r		
Fallacy (INVALID ARGUMENTS)			
Converse Error	D.).C		
	p→q		
⇒	q ∴p		
Inverse Error			
	q→p ~p		
	P ∴~q		
	·· Y		

By TheEmu001

cheatography.com/theemu001/

Not published yet. Last updated 21st September, 2016. Page 2 of 2. Sponsored by ApolloPad.com

Everyone has a novel in them. Finish Yours! https://apollopad.com