List of Equivalences		
Conditiona I Statemnts	$\begin{aligned} & p \rightarrow q \equiv \sim \\ & (p \wedge \sim q) \end{aligned}$	$p \rightarrow q \equiv \sim p \vee q$
contraposi tive	$p \rightarrow q \equiv \sim q \rightarrow \sim p$	
Converse	$\begin{aligned} & p \rightarrow q \\ & \text { (cond) } \end{aligned}$	$q \rightarrow p$ (converse)
inverse	$\begin{aligned} & p \rightarrow q \\ & \text { (cond) } \end{aligned}$	$\sim p \rightarrow \sim p$ (inverse)
vacuously true = true by absence converse and inverse are the SAME		
Useful Symbols		
$\forall \quad$ for all (universal operator)		
$\exists \quad$ exists (existential operator)		
$\in \quad$ in the set		
\wedge and		
v or		
\sim not		
$\equiv \quad$ equivalent		
\subset subset		
\supset superset		
$\}$,\varnothing		
$\leftrightarrow \quad$ biconditional (both are true)		
Statements		
Universal		all, for
Existential		east, there sts
Conditional		\rightarrow then
Universal For all \& if-then Conditional		

Statements (cont)	For all \& there exists	Subsets
Universal Existential	B=subset, A=superset	
Existential Universal	There exists \& for all	Proper Subsets: elements that belong to superset but NOT subset
Functions		
Requirements:		

Relations	
Relations $=$	subsets of cartesian product
R $\subseteq A \times B$	Relation \subseteq Domain x Codomain
Domain	SET that includes every element from source

Existential
Universal Conditional

don't always have to include ordered pairs
 handle conjunction and disjunction negations
$\sim(p \wedge q) \equiv \sim p \vee \sim q$
$\sim(p \vee q) \equiv \sim p \wedge \sim q$
"The connector is loose(I) or the machine is unplugged(u)"
| v u -- negation --> ~(।
$v u) \equiv \sim 1 \wedge \sim u$
"The connector is not
loose and the machine
is not unplugged"
$\sim p \vee q$ is the opposite of
$p \wedge \sim q$
When using
DeMorgan's law, no need for truth table

$\left.$| Tautologies and Contradictions | | |
| :--- | :--- | :--- |
| Tautologies | Always true
 statements | t |
| Contradictio
 ns | Always false
 statements | c |
| $\mathrm{p} \wedge \sim \mathrm{p}=\mathbf{c}$ | $\mathrm{T} \wedge \mathrm{F} \equiv \mathrm{c}$ | |$\quad \mathrm{F} \wedge \mathrm{T} \equiv \right\rvert\,$

Absorption law: variable absorbing operator
\Rightarrow use truth table to prove law
\Rightarrow other variables don't play a role in statement validity $p \vee(p \wedge q) \equiv p ; p \wedge(p \vee q) \equiv p$

Argument Truth Table

Critical row = row where both premises are true
premises and conclusion = TRUE is a valid argument

```
Arguments
```

$p \rightarrow q$	major premise
p	minor premise
$\therefore q$	therefore, conclusion
premises aka assumptions or hypotheses	
verified using truth table	

By TheEmu001

cheatography.com/theemu001/

Not published yet.
Last updated 21st September, 2016.
Page 1 of 2.

Sponsored by ApolloPad.com

Everyone has a novel in them. Finish Yours! https://apollopad.com

Argument Forms (VALID)	
Modus Pones	$p \rightarrow q$
	p
	$\therefore \mathrm{q}$
Modus Tollens	$p \rightarrow q$
	$\sim \mathrm{q}$
	$\therefore \sim p$
Gneralization	p
	$\therefore \mathrm{pvq}$
Specialization	$p \wedge q$
	$\therefore \mathrm{q}$
Elimination	pvq
	$\sim \mathrm{q}$
	\therefore p
Transitivity	$p \rightarrow q$
	$q \rightarrow r$
	$\therefore p \rightarrow r$
Proof by div. into cases	pvq
	$p \rightarrow r$
	$q \rightarrow r$
	$\therefore r$
Fallacy (INVALID ARGUMENTS)	
Converse Error	$p \rightarrow q$
	q
\Rightarrow	\therefore p
Inverse Error	$q \rightarrow p$
	$\sim \mathrm{p}$
	$\therefore \sim q$

By TheEmu001

cheatography.com/theemu001/

Not published yet.
Last updated 21st September, 2016.
Page 2 of 2.

Sponsored by ApolloPad.com

Everyone has a novel in them. Finish Yours! https://apollopad.com

