Cheatography

Discrete Exam 1 Cheat Sheet by TheEmu001 via cheatography.com/30732/cs/9211/

Useful Symbols			List of Equivalences (cont)			Functions			Tautologies and Contradictions				
Ε		for all (universal operator) exists (existential		inverse $p \rightarrow q$ $p \rightarrow p$ (cond) (inverse)			Requirements: - Arrow coming out of every		Tautol- ogies	Always true statements	t		
E	operator) in the set			vacuously true = true by absence converse and inverse are the SAME			element in domain - Every element can only have one element of <i>domain</i> connected to one element of <i>codomain</i>		Contra- dictions	Always false	С		
∧ ∨	and or								p∧~p≡ c	statements T∧F ≡c	F∧T≡F		
~	not equivalent			Set-Builder Notation			unsatisfied requirement = relation y can be used repeatedly but x values only have one arrow coming out ates and Quantified redicate Statement original negated		pvt≡t p∧c≡c Absorption law: variable absorbing operator ⇒use truth table to prove law ⇒other variables don't play a role in statement validity pv(p∧q)≡ p; p∧(p∨q)≡ p p→q truth table				
⊂ ⊃ {},	subset superset empty set biconditional (both are true)			Elements/ Belongs to Such that variables $\{x \in D \mid P(x)\}\$ set Domain(set)									
Ø ↔													
Statements			Set-Roster Notation			type Universal ∀x∈D, ∃x∈D,	Truth Table for $p \to q$ p q $p \to q$ T T T						
Universal		For all, for each		A = {1, 2, 3 100} use ellipses for larger sets		P(x) ~P(x) Existential			T F F F T T F F T				
Existential		At leas exists	At least, there exists		Subsets		Universal Conditional			t Truth Toblo	_		
Condi			lf → then For all & if-		B⊆A B=subset, A=superset			DeMorgan's Law					
Conditional th Universal Fo		then	& there	Proper Subsets: elements that belong to superset but NOT subset		 Tells us how to handle conjunction and disjunction negations (p∧q) ≡ pV~q (p∨q) ≡ p∧~q 		T T F T					
	Existential TI Jniversal fo		e exists & Relations Relations=		subsets of		"The connector is loose(l) or the machine is unplugged(u)"	l(u)"	Critical row = row where both premises are true				
List of Equi		alences p→q≡ _{(p∧} q)	p→q≡~p\	R⊆AxB ′q	cartesian product Relation ⊆ Domain x Codomain		$I \vee u$ negation> $(I \vee u) \equiv I$ $\wedge \sim u$ "The connector is not loose <i>and</i> the machine is not unplugged" $p \vee q$ is the opposite of $p \wedge q$		loose <i>and</i>	premises and conclusion = TRUE is a valid argument Arguments			
ional Staten				Domain	SET that includes every element				najor premise				
contra positiv				from source		When using DeMorgan's law, no need for truth table			ninor premise herefore, concl	lusion			
Conve	rerse p→q q→p (cond) (convers		don't always have to include ordered pairs ə)							s aka assumpti			

By TheEmu001

Not published yet. Last updated 21st September, 2016. Page 1 of 2. Sponsored by Readable.com Measure your website readability! https://readable.com

cheatography.com/theemu001/

Cheatography

Discrete Exam 1 Cheat Sheet
by TheEmu001 via cheatography.com/30732/cs/9211/

Argument Forms (VALID))
Modus Pones	p→q
	р
	∴q
Modus Tollens	p→q
	~q
	∴~p
Gneralization	р
	∴pVq
Specialization	p∧q
	.∴q
Elimination	p∨q
	~q
	∴p
Transitivity	p→q
	q→r
	∴p→r
Proof by div. into cases	p∨q
	p→r
	q→r
	∴r
Fallacy (INVALID	
ARGUMENTS)	
Converse Error	p→q
	q
⇒	∴p
Inverse Error	q→p
	~p
	.∴~q

By TheEmu001

Not published yet. Last updated 21st September, 2016. Page 2 of 2. Sponsored by **Readable.com** Measure your website readability!

https://readable.com

cheatography.com/theemu001/