Cheatography

Discrete Exam 1 Cheat Sheet by TheEmu001 via cheatography.com/30732/cs/9211/

List of Equivalences			Statements (cont)			Subsets		Tautologies and Contradictions			
Condition	na p→q≡~ (p∧~q)	p→q≡~p∨q	Universal Existential	For all	& there exists	B⊆A		ubset, uperset	Tautologie	s Always true statements	t
Statemnt			Existential Univ	ersal There	exists & for all	Proper	Subs	sets:	Contradicti	.,	С
contraposi $p \rightarrow q \equiv \sim q \rightarrow \sim p$ tive		Functions			elements that belong to superset but NOT		ns n A ~ n=0	statements T∧F≡c	F∧T≡l		
Converse	e p→q	q→p	Requirements:			subset			p∧~p≡ c pvt≡t	p∧ c ≡ c	1 // 1 –
	(cond)	(converse)	- Arrow coming	out of every el	ement in	Polotic	200			<u> </u>	ina
inverse p→q (cond)		~p→~p (inverse)	domain - Every element can only have one element		Relations subsets of		Absorption law: variable absorbing operator ⇒use truth table to prove law ⇒other variables don't play a role in statement validity pv(p∧q)≡ p; p∧(pvq)≡ p p→q truth table				
vacuously true = true by absence converse and inverse are the			of domain connected to one element of codomain			carte				subsets of cartesian product	
SAME			unsatisfied requirement = relation			$R \subseteq A \times B$				Relation ⊆ Domain x Codomain	
Useful Symbols			y can be used repeatedly but x values only have one arrow coming out								
	,	sal operator)	Predicates and	d Quantified St	tatements	Domaii	n	SET that		Truth Table for $p \rightarrow q$	
	xists (exister	ntial operator)	Statement	original	negated			includes		$\begin{array}{c cccc} p & q & p \rightarrow q \\ \hline T & T & T \\ \hline T & F & F \end{array}$	
	nd		type					every element		F T T F F T	
V 0			Universal	$\forall x \in D, P(x)$	∃x∈D,			from			
	not		~P(x)			source		Argument	Truth Table		
≡ e	equivalent =		Universal Conditional			don't always have to include ordered pairs			premises conclus	dos	
⊂ si			Set-Builder Notation			DeMorgan's Law • Tells us how to handle conjunction and disjunction negations		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
⊃ sı	superset										
{}, e	empty set		Elements/ Belongs to Such that variables								
↔ bi	biconditional (both are true)										
Statements			$\{x \in D \mid P(x)\}$			$\sim (p \land q) \equiv \sim p \lor \sim q$ $\sim (p \lor q) \equiv \sim p \land \sim q$ "The connector is		true premises and conclusion = TRUE is a valid argument			
Universal For all, for each		set V N Predicate		loose(l	loose(I) or the machine is unplugged(u)" I V u negation> \sim (I V u) $\equiv \sim$ I $\Lambda \sim u$		Arguments				
Existential At least, there exists		Set-Roster Notation					v u) ≡	p→q	major premise		
Conditional If -		→ then	A = {1, 2, 3 100} use ellipses for larger sets			"The connector is not loose <i>and</i> the machine is not unplugged"		р	minor premise		
		or all & if-then						∴q	therefore, conclusion		
Condition	nal					~pvq is the oppo p^~q		opposite of		nka assumptions or hyping truth table	otheses
							gan's	law, no th table			

By TheEmu001

cheatography.com/theemu001/

Not published yet. Last updated 21st September, 2016. Page 1 of 2. Sponsored by **CrosswordCheats.com** Learn to solve cryptic crosswords!

http://crosswordcheats.com

Discrete Exam 1 Cheat Sheet by TheEmu001 via cheatography.com/30732/cs/9211/

Argument Forms (VALID)	
Modus Pones	p→q
	р
	∴q
Modus Tollens	$p \rightarrow q$
	~q
	∴~p
Gneralization	р
	∴pvq
Specialization	p^q
	∴q
Elimination	pvq
	~q
	∴р
Transitivity	$p{ o}q$
	$q{ ightarrow} r$
	$\cdot p \rightarrow r$
Proof by div. into cases	pvq
	$p{ o}r$
	$q{ ightarrow} r$
	∴r

Fallacy (INVALID ARGUMENTS)					
Converse Error	p→q				
	q				
⇒	∴р				
Inverse Error	q→p				
	~p				
	∴~q				

By TheEmu001 cheatography.com/theemu001/

Not published yet. Last updated 21st September, 2016. Page 2 of 2. Sponsored by **CrosswordCheats.com**Learn to solve cryptic crosswords!
http://crosswordcheats.com