Android Studio App Development Cheat Sheet Cheat Sheet

by thecontinentalreaper (thecontinentalreaper) via cheatography.com/171910/cs/361

Cheatography

Mobile App Development Lifecycle

Inception > Design(UX->Ul) > Development Principles: User familiarity, consistency, Functions Variables
> Stabilization > Distribution minimal surprise, recoverability, user public fun //val is immutable.
guidance, user diversity sum(a: var is mutable//

IDEs for Mobile App Development Int, b: val a: Int = 1 val

Android Studio (Java/Kotilin), XCode Ul Design Process Int): Int b: String =

(Objective C/Swift, can only run on MacOS), { return a “tim”{nl} //Types
Microsoft XNA (C#, for Windows Phone
apps), cocos2d(multi-language and

Bied desiga] + b} Int, String are
Bow

optional and can be

platform, for games), Unity (C#, cross-pla- excluded//
tform), React Native (JS, cross-platform), Nullable Arays
Flutter (Dart language), Apache Cordova variable val num = arrayof (1,
(HTML5, CSS3 and JS, cross-platform), var str 2, 3, 4) //implicit
MiniProgram (for making lightweight apps .)
that don't require installation and occupy

hku " val num = arrayO -

little memory/space) Broadcasts are messages sent whenever

, str = null f£<T nt>(1, 2, 3, 4
an event of interests occurs from the ne>(1, 2, 3, 4

. Null safef ici
Design Patterns Android System or from apps. Apps can ty //explicit type
. q q a str: i
register to receive certain broadcasts. They var str declaration
. . a ? =" o . .
must be defined programatically in the code 527 for (i in
in addition to being declared in the manifest beu 0..num.si ze-1) f{
with intent filters. <in ten t-f ilt - val I = print (num[i]) }
er> <action androi d:n ame - S27.length
T presenter ="AC TIO N"/> </i nte nt- fil - //if 82 is
Notifies Jser
e Updae the Duc e ter> BroadcastReceivers have an null, T is
Ui ha U onReceive() function to check intent.action. set o null
User Interactions View Model
Must include the following permissions:
<us es- per mission androi d:n -
Updates ame ="an dro id.p er mis sio -
n.I NTE RNE T" /> <us es- per -
e L P - mission androi d:n ame ="an -
e . dro id.p er mis sio n.A CCE -
SS_ NET WOR K_S TAT E" />
Lok Low Good Yes
Eresenier WebView is a View that can be display web
MVVM A
viewdode! RN Great Yes pages in your app.
By thecontinentalreaper Not published yet. Sponsored by CrosswordCheats.com
(thecontinentalreaper) Last updated 15th December, 2022. Learn to solve cryptic crosswords!
Page 1 of 3. http://crosswordcheats.com

cheatography.com/thecontinentalreaper/

http://www.cheatography.com/
http://www.cheatography.com/thecontinentalreaper/
http://www.cheatography.com/thecontinentalreaper/cheat-sheets/android-studio-app-development-cheat-sheet
https://cheatography.com/uploads/thecontinentalreaper_1671073307_Screenshot%20from%202022-12-15%2011-01-30.png
https://cheatography.com/uploads/thecontinentalreaper_1671074024_Screenshot%20from%202022-12-15%2011-12-39.png
http://www.cheatography.com/thecontinentalreaper/
http://crosswordcheats.com

Cheatography

Java vs Kotilin (cont)

Classes Ul Elements
class

Person (val
name: EditText

String,

val age: ew> (R.1 d.b ut tonl)

Int? =
null)
//Declares
class and
constr -
uctor in
one line!
val
personl =
Person -
(“Sam”,
20) //No
new

keyword

Android Layout

Inflate the layout file in OnCreate():
public void onCrea te(Bundle
savedI nst anc eState) {

super.o nC rea te(sav edl nst -
anc eSt ate); setCon ten tVi -
ew(R.1 ayo ut.a ct ivi ty -
main) ; }

FrameLayout: Display a single item at a
time. All elements are positioned based on
top left of the screen, and multiple elements
will overlap.

LinearLayout: Organizes elements along a
single line, either horizontal or vertical
(defined in XML property androi d:o -

rie nta tio n="h ori zon tal ")

By thecontinentalreaper
(thecontinentalreaper)

cheatography.com/thecontinentalreaper/

RelativeLayout: androi d:1 ayo ut -

val edit_textl = findVi eaBoy¥d/-bel ow/ toL eft Of/ -
<Vi ew> (R.i d.e di tTextf#o¢RasghtOf

androi d:1 ayo ut ali gnB ase -

val buttonl = findVi ewB yid &¥B ott om/ Lef t/R igh -

as Batspn

val listener = View.O nClTableLayout<Ta ble Lay out ><T -

tener {edit_textl.setTextdBhedRo!W>¢ Element androi d:1 -
buttonl.setOnClickListenegyfdistenes) umn ="1"/ ></ Tab -

leR ow>...< /T abl ela you t>
ConstraintLayout: Constrain a component to
be in a position relative to another element.
For example, app:la you t c ons -
tra int Lef t t oRi ght Of= " -
@+i d/e lem ent " /> would
constrain the left side of the target to the
right side of the other element. Rember, it is
app:layout, NOT android:layout.

Use sp for font size, as it scales with user
font preferences, and dp for others as it
changes based on different screen density.

Concurrency

A process is an instance of a program that
is being executed or processed. They don't
share resources. Switching between
process is expensive. Threads are
segments of processes and share memory.
Thread({...}.start()

Main Thread is the Ul thread which renders
everything onscreen. Two rules of Android
Ul: Do not block the Ul thread. Do not
access the Ul toolkit from outside the Ul
thread.

Runnable is a class that can be run inside a
Thread with just 1 method: run().

Not published yet.
Last updated 15th December, 2022.
Page 2 of 3.

Android Studio App Development Cheat Sheet Cheat Sheet

by thecontinentalreaper (thecontinentalreaper) via cheatography.com/171910/cs/361

Android Layout (cont)

Concurrency (cont)

Remember to use myUIElement.post{
Runnable } to force the Runnable object to
join a queue so as to not break the rule.
Handlers can also be used to update the Ul
thread (handle r.post{ Runnable).
Remember, Threads cannot update Ul, only
Handlers. Before running post() using
Handler, call handler.removeCallbacks(run-
nable) to remove any pending posts of the
runnable in the queue so as to avoid
repeated task. handler.postDelayed(runn-
able, time) delays the runnable from starting
until after the specified time..

Activity LifeCycle

@ onCreate()

@ Enter memory
@ onStart()

@ Become visible
@ onResume()

@ Get focus /
foreground

@ onPause()

@ Lose focus /
foreground

@ onStop()
@ Become invisible
@ onDestroy()

0 visible
@ Leave memory Ovisble yco
s

0 focu: shst down

sit

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/thecontinentalreaper/
http://www.cheatography.com/thecontinentalreaper/cheat-sheets/android-studio-app-development-cheat-sheet
https://cheatography.com/uploads/thecontinentalreaper_1671077226_Screenshot%20from%202022-12-15%2012-06-14.png
http://www.cheatography.com/thecontinentalreaper/
http://crosswordcheats.com

Cheatography

Intents and Filters

Intents are messages sent between Activity,
Service and Broad Receivers. Explicit
intents are used within the application for
tasks such as switching between activities.
They specify which component should be
called. Kotilin: intent = Intent -
(this, FooAct ivi ty: :cl -
ass.java) startA cti vit y(i -
ntent) ; /mplicit intents only specify the
action to be performed, and are sent to the
Android system which chooses which
component should be used. Kotilin: intent
= Intent (In ten t.A CTI ON_ -
VIEW, Uri.pa rse (UR LStr));
startA cti vit y (i ntent);

Activity needs Intent Filter to receive implicit
intents. <in ten t-f ilt er> <action
androi d:name = " hku cs.m yi -
nte ntf ilt er" /> <ca tegory

androi d:name = and roi d.i -
nte nt.c at ego ry.D EF AUL T"
/> </1i nte nt- fil ter> Passing
extra data: Sender: myInte nt.p ut -
Ext ra(" ID", 6963) Recpient:val
bundle: Bundle? = intent.extras
bundle?.let {bundl e.apply { val
inputS tring: String? = getStr -

ing (“I D") // id = 6963}}.

Fragment

Must implement: onCreate() - called when
creating the fragment, should initialize
essential components you want to retain
when the fragment is paused or stopped,
then resumed. onCreateView - called when
the fragment draws its user interface for the
first time. Optional: onPause() - called when
the user is leaving the fragment.

Kotilin implementation

By thecontinentalreaper
(thecontinentalreaper)

cheatography.com/thecontinentalreaper/

Fragment (cont)

val manager: Fragme ntM anager =
supportFragmentManager

val ft: Fragme ntT ran saction =
manager.beginTransaction ()

if (fragment != null) ft.rep -
lac e(<ID of region in main
layout >, <class name of

fragme nt> (), <number tag to
represent fragme nt>); ft.com -

mit All owi ngS tat elLo ss();

StartService(): runs indefinitely even if caller
app dies. Simple, single task. No return
result. Cannot be called back or modified
after it is sent out.

BindService(): Can be bound to multiple
components. Terminates if all callers die.
Can be modified after being sent out.

A service can be both started and bound
simulatenously.

Activating service: val intent =

Intent (this, HelloS erv -

ice ::c las s.j ava); startS -
erv ice (In tent);

Return value of onStartCommand():
START_NOT_STICKY: Do not recreate
after kill. Caller can restart unfinished jobs
START_STICKY: Recreate, but do not
redeliver last intent. Continuous work but
stateless, e.g. media players.
START_REDELIVER_INTENT: Recreate,
and redeliver last intent. Actively performing
a job, e.g. file download

Not published yet.
Last updated 15th December, 2022.
Page 3 of 3.

Android Studio App Development Cheat Sheet Cheat Sheet

by thecontinentalreaper (thecontinentalreaper) via cheatography.com/171910/cs/361

Storage

SharedPreferences: Private primitive data in
key-value pairs (persistent storage)
Bundles: Private primitive data in key-value
pairs (temp storage for activity-fragment
transfer)

Internal storage: Private data on device
memory

External storage: Public data on internal or
shared external storage, e.g., SD card
SQLite database: Structured data (table) in
a private database

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/thecontinentalreaper/
http://www.cheatography.com/thecontinentalreaper/cheat-sheets/android-studio-app-development-cheat-sheet
http://www.cheatography.com/thecontinentalreaper/
http://crosswordcheats.com

	Android Studio App Development Cheat Sheet Cheat Sheet - Page 1
	Mobile App Develo­pment Lifecycle
	UI Design
	Java vs Kotilin
	IDEs for Mobile App Develo­pment
	UI Design Process
	Broadcasts
	Design Patterns
	Server Connection

	Android Studio App Development Cheat Sheet Cheat Sheet - Page 2
	Activity LifeCycle
	Android Layout
	Concur­rency

	Android Studio App Development Cheat Sheet Cheat Sheet - Page 3
	Intents and Filters
	Storage
	Service
	Fragment

