
Android Studio App Development Cheat Sheet Cheat Sheet
by thecontinentalreaper (thecontinentalreaper) via cheatography.com/171910/cs/36123/

Mobile App Develo​pment Lifecycle

Inception > Design(UX->UI) > Develo​pment
> Stabil​ization > Distri​bution

IDEs for Mobile App Develo​pment

Android Studio (Java/​Kot​ilin), XCode
(Objective C/Swift, can only run on MacOS),
Microsoft XNA (C#, for Windows Phone
apps), cocos2​d(m​ult​i-l​anguage and
platform, for games), Unity (C#, cross-​pla​‐
tform), React Native (JS, cross-​pla​tform),
Flutter (Dart language), Apache Cordova
(HTML5, CSS3 and JS, cross-​pla​tform),
MiniPr​ogram (for making lightw​eight apps
that don't require instal​lation and occupy
little memory​/space)

Design Patterns

UI Design

Principles: User famili​arity, consis​tency,
minimal surprise, recove​rab​ility, user
guidance, user diversity

UI Design Process

Broadcasts

Broadcasts are messages sent whenever
an event of interests occurs from the
Android System or from apps. Apps can
register to receive certain broadc​asts. They
must be defined progra​mat​ically in the code
in addition to being declared in the manifest
with intent filters. <in​ten​t-f​ilt​‐
er>​<action androi​d:n​ame​‐
="AC​TIO​N"/>​</i​nte​nt-​fil​‐
ter> Broadc​ast​Rec​eivers have an
onRece​ive() function to check intent.ac​tion.

Server Connection

Must include the following permis​sions:
<us​es-​per​mission androi​d:n​‐
ame​="an​dro​id.p​er​mis​sio​‐
n.I​NTE​RNE​T" /> <us​es-​per​‐
mission androi​d:n​ame​="an​‐
dro​id.p​er​mis​sio​n.A​CCE​‐
SS_​NET​WOR​K_S​TAT​E" />
WebView is a View that can be display web
pages in your app.

Java vs Kotilin

Functions
public fun
sum(a:
Int, b:
Int): Int
{ return a
+ b }

Variables
//val is immutable.
var is mutable//
val a: Int = 1 val
b: String =
“tim”{nl} //Types
Int, String are
optional and can be
excluded//

Nullable
variable
var str
S2? = "​‐
hku​"
str = null
Null safety
var str:
S2? = "​‐
hku​"
val I =
S2?.length
//if S2 is
null, I is
set o null

Arrays
val num = arrayOf(1,
2, 3, 4) //implicit
type declar​ation
val num = arrayO​‐
f<I​nt>(1, 2, 3, 4)
//explicit type
declaration
for (i in
0..num.si​ze-1) {
print(​num[i]) }

By thecontinentalreaper
(thecontinentalreaper)

cheatography.com/thecontinentalreaper/

Not published yet.
Last updated 15th December, 2022.
Page 1 of 3.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/thecontinentalreaper/
http://www.cheatography.com/thecontinentalreaper/cheat-sheets/android-studio-app-development-cheat-sheet
https://cheatography.com/uploads/thecontinentalreaper_1671073307_Screenshot%20from%202022-12-15%2011-01-30.png
https://cheatography.com/uploads/thecontinentalreaper_1671074024_Screenshot%20from%202022-12-15%2011-12-39.png
http://www.cheatography.com/thecontinentalreaper/
http://crosswordcheats.com

Android Studio App Development Cheat Sheet Cheat Sheet
by thecontinentalreaper (thecontinentalreaper) via cheatography.com/171910/cs/36123/

Java vs Kotilin (cont)

Classes
class
Person(val
name:
String,
val age:
Int? =
null)
//Declares
class and
constr​‐
uctor in
one line!
val
person1 =
Person​‐
(“Sam”,
20) //No
new
keyword

UI Elements
val edit_text1 = findVi​ewB​yId​‐
<Vi​ew>​(R.i​d.e​di​tText1) as
EditText
val button1 = findVi​ewB​yId​<Vi​‐
ew>​(R.i​d.b​ut​ton1) as Button
val listener = View.O​nCl​ick​Lis​‐
tener {edit_text1.setText("hello!")}
button1.setOnClickListener(listener)

Android Layout

Inflate the layout file in OnCrea​te():
public void onCrea​te(​Bundle
savedI​nst​anc​eState) {
super.o​nC​rea​te(​sav​edI​nst​‐
anc​eSt​ate); setCon​ten​tVi​‐
ew(​R.l​ayo​ut.a​ct​ivi​ty_​‐
main);}
FrameL​ayout: Display a single item at a
time. All elements are positioned based on
top left of the screen, and multiple elements
will overlap.
Linear​Layout: Organizes elements along a
single line, either horizontal or vertical
(defined in XML property androi​d:o​‐
rie​nta​tio​n="h​ori​zon​tal​")

Android Layout (cont)

Relati​veL​ayout: androi​d:l​ayo​ut_​‐
abo​ve/​bel​ow/​toL​eft​Of/​‐
toR​ightOf
androi​d:l​ayo​ut_​ali​gnB​ase​‐
lin​e/B​ott​om/​Lef​t/R​igh​‐
t/Top
TableL​ayout:<Ta​ble​Lay​out​><T​‐
abl​eRo​w><​Element androi​d:l​‐
ayo​ut_​col​umn​="1"/​></​Tab​‐
leR​ow>...<​/T​abl​eLa​you​t>
Constr​ain​tLayout: Constrain a component to
be in a position relative to another element.
For example, app:la​you​t_c​ons​‐
tra​int​Lef​t_t​oRi​ght​Of=​"​‐
@+i​d/e​lem​ent​"​/> would
constrain the left side of the target to the
right side of the other element. Rember, it is
app:layout, NOT androi​d:l​ayout .
Use sp for font size, as it scales with user
font prefer​ences, and dp for others as it
changes based on different screen density.

Concur​rency

A process is an instance of a program that
is being executed or processed. They don't
share resources. Switching between
process is expensive. Threads are
segments of processes and share memory.
Thread​{...}.s​tart()
Main Thread is the UI thread which renders
everything onscreen. Two rules of Android
UI: Do not block the UI thread. Do not
access the UI toolkit from outside the UI
thread.
Runnable is a class that can be run inside a
Thread with just 1 method: run().

Concur​rency (cont)

Remember to use myUIEl​eme​nt.p​ost{
Runnable } to force the Runnable object to
join a queue so as to not break the rule.
Handlers can also be used to update the UI
thread (handle​r.post{ Runnable }).
Remember, Threads cannot update UI, only
Handlers. Before running post() using
Handler, call handle​r.r​emo​veC​all​bac​ks(​run​‐
nable) to remove any pending posts of the
runnable in the queue so as to avoid
repeated task. handle​r.p​ost​Del​aye​d(r​unn​‐
able, time) delays the runnable from starting
until after the specified time..

Activity LifeCycle

By thecontinentalreaper
(thecontinentalreaper)

cheatography.com/thecontinentalreaper/

Not published yet.
Last updated 15th December, 2022.
Page 2 of 3.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/thecontinentalreaper/
http://www.cheatography.com/thecontinentalreaper/cheat-sheets/android-studio-app-development-cheat-sheet
https://cheatography.com/uploads/thecontinentalreaper_1671077226_Screenshot%20from%202022-12-15%2012-06-14.png
http://www.cheatography.com/thecontinentalreaper/
http://crosswordcheats.com

Android Studio App Development Cheat Sheet Cheat Sheet
by thecontinentalreaper (thecontinentalreaper) via cheatography.com/171910/cs/36123/

Intents and Filters

Intents are messages sent between Activity,
Service and Broad Receivers. Explicit
intents are used within the applic​ation for
tasks such as switching between activities.
They specify which component should be
called. Kotilin: intent = Intent​‐
(this, FooAct​ivi​ty:​:cl​‐
ass.java) startA​cti​vit​y(i​‐
ntent); Implicit intents only specify the
action to be performed, and are sent to the
Android system which chooses which
component should be used. Kotilin: intent
= Intent​(In​ten​t.A​CTI​ON_​‐
VIEW, Uri.pa​rse​(UR​LStr));
startA​cti​vit​y(i​ntent);
Activity needs Intent Filter to receive implicit
intents. <in​ten​t-f​ilt​er> <action
androi​d:name = "​hku​cs.m​yi​‐
nte​ntf​ilt​er" /> <ca​tegory
androi​d:name = "​and​roi​d.i​‐
nte​nt.c​at​ego​ry.D​EF​AUL​T"
/> </i​nte​nt-​fil​ter> Passing
extra data: Sender: myInte​nt.p​ut​‐
Ext​ra(​"​ID", 6963) Recpient: val
bundle: Bundle? = intent.extras
bundle?.let {bundl​e.apply { val
inputS​tring: String? = getStr​‐
ing​(“I​D") // id = 6963}}.

Fragment

Must implement: onCreate() - called when
creating the fragment, should initialize
essential components you want to retain
when the fragment is paused or stopped,
then resumed. onCrea​teView - called when
the fragment draws its user interface for the
first time. Optional: onPause() - called when
the user is leaving the fragment.
Kotilin implem​ent​ation

Fragment (cont)

val manager: Fragme​ntM​anager =
supportFragmentManager
val ft: Fragme​ntT​ran​saction =
manager.beginTransaction()
if (fragment != null) ft.rep​‐
lac​e(<ID of region in main
layout​>, <class name of
fragme​nt>(), <number tag to
represent fragme​nt>); ft.com​‐
mit​All​owi​ngS​tat​eLo​ss();

Service

StartS​erv​ice(): runs indefi​nitely even if caller
app dies. Simple, single task. No return
result. Cannot be called back or modified
after it is sent out.
BindSe​rvice(): Can be bound to multiple
compon​ents. Terminates if all callers die.
Can be modified after being sent out.
A service can be both started and bound
simula​ten​ously.
Activating service: val intent =
Intent​(this, HelloS​erv​‐
ice​::c​las​s.j​ava); startS​‐
erv​ice​(In​tent);
Return value of onStar​tCo​mmand():
START_​NOT​_ST​ICKY: Do not recreate
after kill. Caller can restart unfinished jobs
START_​STICKY: Recreate, but do not
redeliver last intent. Continuous work but
stateless, e.g. media players.
START_​RED​ELI​VER​_IN​TENT: Recreate,
and redeliver last intent. Actively performing
a job, e.g. file download

Storage

Shared​Pre​fer​ences: Private primitive data in
key-value pairs (persi​stent storage)
Bundles: Private primitive data in key-value
pairs (temp storage for activi​ty-​fra​gment
transfer)
Internal storage: Private data on device
memory
External storage: Public data on internal or
shared external storage, e.g., SD card
SQLite database: Structured data (table) in
a private database

By thecontinentalreaper
(thecontinentalreaper)

cheatography.com/thecontinentalreaper/

Not published yet.
Last updated 15th December, 2022.
Page 3 of 3.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/thecontinentalreaper/
http://www.cheatography.com/thecontinentalreaper/cheat-sheets/android-studio-app-development-cheat-sheet
http://www.cheatography.com/thecontinentalreaper/
http://crosswordcheats.com

	Android Studio App Development Cheat Sheet Cheat Sheet - Page 1
	Mobile App Develo­pment Lifecycle
	UI Design
	Java vs Kotilin
	IDEs for Mobile App Develo­pment
	UI Design Process
	Broadcasts
	Design Patterns
	Server Connection

	Android Studio App Development Cheat Sheet Cheat Sheet - Page 2
	Activity LifeCycle
	Android Layout
	Concur­rency

	Android Studio App Development Cheat Sheet Cheat Sheet - Page 3
	Intents and Filters
	Storage
	Service
	Fragment

