
Android Studio App Development Cheat Sheet Cheat Sheet
by thecontinentalreaper (thecontinentalreaper) via cheatography.com/171910/cs/36123/

Mobile App Development LifecycleMobile App Development Lifecycle

InceptionInception > DesignDesign(UX->UI) > DevelopmentDevelopment
> Stabilization Stabilization > DistributionDistribution

IDEs for Mobile App DevelopmentIDEs for Mobile App Development

Android Studio (Java/Kotilin), XCode
(Objective C/Swift, can only run on MacOS),
Microsoft XNA (C#, for Windows Phone
apps), cocos2d(multi-language and
platform, for games), Unity (C#, cross-pla‐
tform), React Native (JS, cross-platform),
Flutter (Dart language), Apache Cordova
(HTML5, CSS3 and JS, cross-platform),
MiniProgram (for making lightweight apps
that don't require installation and occupy
little memory/space)

Design PatternsDesign Patterns

UI DesignUI Design

PrinciplesPrinciples: User familiarity, consistency,
minimal surprise, recoverability, user
guidance, user diversity

UI Design ProcessUI Design Process

BroadcastsBroadcasts

Broadcasts are messages sent whenever
an event of interests occurs from the
Android System or from apps. Apps can
register to receive certain broadcasts. They
must be defined programatically in the code
in addition to being declared in the manifest
with intent filters. <intent-filt‐
er><action android:name‐
="ACTION"/></intent-fil‐
ter> BroadcastReceivers have an
onReceive() function to check intent.action.

Server ConnectionServer Connection

Must include the following permissionsMust include the following permissions:
<uses-permission android:n‐
ame="android.permissio‐
n.INTERNET" /> <uses-per‐
mission android:name="an‐
droid.permission.ACCE‐
SS_NETWORK_STATE" />
WebViewWebView is a View that can be display web
pages in your app.

Java vs KotilinJava vs Kotilin

FunctionsFunctions
public fun
sum(a:
Int, b:
Int): Int
{ return a
+ b }

VariablesVariables
//val is immutable.
var is mutable//
val a: Int = 1 val
b: String =
“tim”{nl} //Types
Int, String are
optional and can be
excluded//

NullableNullable
variable variable
var str
S2? = "‐
hku"
str = null
Null safetyNull safety
var str:
S2? = "‐
hku"
val I =
S2?.length
//if S2 is
null, I is
set o null

ArraysArrays
val num = arrayOf(1,
2, 3, 4) //implicit
type declaration
val num = arrayO‐
f<Int>(1, 2, 3, 4)
//explicit type
declaration
for (i in
0..num.size-1) {
print(num[i]) }

By thecontinentalreaperthecontinentalreaper
(thecontinentalreaper)

cheatography.com/thecontinentalreaper/

Not published yet.
Last updated 15th December, 2022.
Page 1 of 3.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/thecontinentalreaper/
http://www.cheatography.com/thecontinentalreaper/cheat-sheets/android-studio-app-development-cheat-sheet
https://cheatography.com/uploads/thecontinentalreaper_1671073307_Screenshot%20from%202022-12-15%2011-01-30.png
https://cheatography.com/uploads/thecontinentalreaper_1671074024_Screenshot%20from%202022-12-15%2011-12-39.png
http://www.cheatography.com/thecontinentalreaper/
http://crosswordcheats.com

Android Studio App Development Cheat Sheet Cheat Sheet
by thecontinentalreaper (thecontinentalreaper) via cheatography.com/171910/cs/36123/

Java vs Kotilin (cont)Java vs Kotilin (cont)

ClassesClasses
class
Person(val
name:
String,
val age:
Int? =
null)
//Declares
class and
constr‐
uctor in
one line!
val
person1 =
Person‐
(“Sam”,
20) //No
new
keyword

UI ElementsUI Elements
val edit_text1 = findViewById‐
<View>(R.id.editText1) as
EditText
val button1 = findViewById<Vi‐
ew>(R.id.button1) as Button
val listener = View.OnClickLis‐
tener {edit_text1.setText("hello!")}
button1.setOnClickListener(listener)

Android LayoutAndroid Layout

Inflate the layout file in OnCreate():Inflate the layout file in OnCreate():
public void onCreate(Bundle
savedInstanceState) {
super.onCreate(savedInst‐
anceState); setContentVi‐
ew(R.layout.activity_‐
main);}
FrameLayoutFrameLayout: Display a single item at a
time. All elements are positioned based on
top left of the screen, and multiple elements
will overlap.
LinearLayoutLinearLayout: Organizes elements along a
single line, either horizontal or vertical
(defined in XML property android:o‐
rientation="horizontal")

Android Layout (cont)Android Layout (cont)

RelativeLayoutRelativeLayout: android:layout_‐
above/below/toLeftOf/‐
toRightOf
android:layout_alignBase‐
line/Bottom/Left/Righ‐
t/Top
TableLayoutTableLayout:<TableLayout><T‐
ableRow><Element android:l‐
ayout_column="1"/></Tab‐
leRow>...</TableLayout>
ConstraintLayoutConstraintLayout: Constrain a component to
be in a position relative to another element.
For example, app:layout_cons‐
traintLeft_toRightOf="‐
@+id/element"/> would
constrain the left side of the target to the
right side of the other element. Rember, it is
app:layoutapp:layout, NOT android:layoutandroid:layout .
Use sp for font size, as it scales with user
font preferences, and dp for others as it
changes based on different screen density.

ConcurrencyConcurrency

A process is an instance of a program that
is being executed or processed. They don't
share resources. Switching between
process is expensive. Threads are
segments of processes and share memory.
Thread{...}.start()Thread{...}.start()
Main ThreadMain Thread is the UI thread which renders
everything onscreen. Two rules of Android
UI: Do not block the UI thread. Do notDo not block the UI thread. Do not
access the UI toolkit from outside the UIaccess the UI toolkit from outside the UI
thread.thread.
RunnableRunnable is a class that can be run inside a
Thread with just 1 method: run().

Concurrency (cont)Concurrency (cont)

Remember to use myUIElement.post{myUIElement.post{
Runnable }Runnable } to force the Runnable object to
join a queue so as to not break the rule.
Handlers can also be used to update the UI
thread (handler.post{ Runnable }).
Remember, Threads cannot update UI, onlyThreads cannot update UI, only
HandlersHandlers. Before running post() using
Handler, call handler.removeCallbacks(run‐
nable) to remove any pending posts of the
runnable in the queue so as to avoid
repeated task. handler.postDelayed(runn‐handler.postDelayed(runn‐
able, time)able, time) delays the runnable from starting
until after the specified time..

Activity LifeCycleActivity LifeCycle

By thecontinentalreaperthecontinentalreaper
(thecontinentalreaper)

cheatography.com/thecontinentalreaper/

Not published yet.
Last updated 15th December, 2022.
Page 2 of 3.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/thecontinentalreaper/
http://www.cheatography.com/thecontinentalreaper/cheat-sheets/android-studio-app-development-cheat-sheet
https://cheatography.com/uploads/thecontinentalreaper_1671077226_Screenshot%20from%202022-12-15%2012-06-14.png
http://www.cheatography.com/thecontinentalreaper/
http://crosswordcheats.com

Android Studio App Development Cheat Sheet Cheat Sheet
by thecontinentalreaper (thecontinentalreaper) via cheatography.com/171910/cs/36123/

Intents and FiltersIntents and Filters

Intents are messages sent between Activity,
Service and Broad Receivers. ExplicitExplicit
intentsintents are used within the application for
tasks such as switching between activities.
They specify which component should be
called. Kotilin: intent = Intent‐
(this, FooActivity::cl‐
ass.java) startActivity(i‐
ntent); Implicit intents only specify the
action to be performed, and are sent to the
Android system which chooses which
component should be used. Kotilin: intent
= Intent(Intent.ACTION_‐
VIEW, Uri.parse(URLStr));
startActivity(intent);
Activity needs Intent FilterIntent Filter to receive implicit
intents. <intent-filter> <action
android:name = "hkucs.myi‐
ntentfilter" /> <category
android:name = "android.i‐
ntent.category.DEFAULT"
/> </intent-filter> PassingPassing
extra dataextra data: Sender: myIntent.put‐
Extra("ID", 6963) Recpient: val
bundle: Bundle? = intent.extras
bundle?.let {bundle.apply { val
inputString: String? = getStr‐
ing(“ID") // id = 6963}}.

FragmentFragment

Must implement: onCreate()onCreate() - called when
creating the fragment, should initialize
essential components you want to retain
when the fragment is paused or stopped,
then resumed. onCreateViewonCreateView - called when
the fragment draws its user interface for the
first time. Optional: onPause()onPause() - called when
the user is leaving the fragment.
Kotilin implementationKotilin implementation

Fragment (cont)Fragment (cont)

val manager: FragmentManager =
supportFragmentManager
val ft: FragmentTransaction =
manager.beginTransaction()
if (fragment != null) ft.rep‐
lace(<ID of region in main
layout>, <class name of
fragment>(), <number tag to
represent fragment>); ft.com‐
mitAllowingStateLoss();

ServiceService

StartService()StartService(): runs indefinitely even if caller
app dies. Simple, single task. No return
result. Cannot be called back or modified
after it is sent out.
BindService()BindService(): Can be bound to multiple
components. Terminates if all callers die.
Can be modified after being sent out.
A service can be both started and bound
simulatenously.
Activating serviceActivating service: val intent =
Intent(this, HelloServ‐
ice::class.java); startS‐
ervice(Intent);
Return value of onStartCommand()Return value of onStartCommand():
START_NOT_STICKY: Do not recreate
after kill. Caller can restart unfinished jobs
START_STICKY: Recreate, but do not
redeliver last intent. Continuous work but
stateless, e.g. media players.
START_REDELIVER_INTENT: Recreate,
and redeliver last intent. Actively performing
a job, e.g. file download

StorageStorage

SharedPreferencesSharedPreferences: Private primitive data in
key-value pairs (persistent storage)
BundlesBundles: Private primitive data in key-value
pairs (temp storage for activity-fragment
transfer)
Internal storageInternal storage: Private data on device
memory
External storageExternal storage: Public data on internal or
shared external storage, e.g., SD card
SQLite databaseSQLite database: Structured data (table) in
a private database

By thecontinentalreaperthecontinentalreaper
(thecontinentalreaper)

cheatography.com/thecontinentalreaper/

Not published yet.
Last updated 15th December, 2022.
Page 3 of 3.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/thecontinentalreaper/
http://www.cheatography.com/thecontinentalreaper/cheat-sheets/android-studio-app-development-cheat-sheet
http://www.cheatography.com/thecontinentalreaper/
http://crosswordcheats.com

	Android Studio App Development Cheat Sheet Cheat Sheet - Page 1
	Mobile App Development Lifecycle
	UI Design
	Java vs Kotilin
	IDEs for Mobile App Development
	UI Design Process
	Broadcasts
	Design Patterns
	Server Connection

	Android Studio App Development Cheat Sheet Cheat Sheet - Page 2
	Activity LifeCycle
	Android Layout
	Concurrency

	Android Studio App Development Cheat Sheet Cheat Sheet - Page 3
	Intents and Filters
	Storage
	Service
	Fragment

