\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{thandimk} \pdfinfo{ /Title (chem-chapters-7-9.pdf) /Creator (Cheatography) /Author (thandimk) /Subject (Chem Chapters 7-9 Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{A3A3A3} \definecolor{LightBackground}{HTML}{F3F3F3} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Chem Chapters 7-9 Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{thandimk} via \textcolor{DarkBackground}{\uline{cheatography.com/126648/cs/35132/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}thandimk \\ \uline{cheatography.com/thandimk} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 2nd November, 2022.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{3} \begin{tabularx}{5.377cm}{x{2.43873 cm} x{2.53827 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{7.1}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Evidence of a Chemical Reaction}} & {\bf{Types of Chemical Reactions}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} Change in Color & Combination: A+ B -\textgreater{} AB \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} Formation of Gas (bubbles) & Decomposition: AB -\textgreater{} A + B \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} Heat (or a flame) Produced or absorbed & Single Replacement: A + BC -\textgreater{} AC + B \tn % Row Count 8 (+ 2) % Row 4 \SetRowColor{LightBackground} Formation of a Solid (precipitate) & Double Replacement: AB+CD -\textgreater{} AD + CB \tn % Row Count 10 (+ 2) % Row 5 \SetRowColor{white} & Combustion: a carbon containing compound burns in oxygen gas to produce the gases carbon dioxide (C02), water (H20), and energy in the form of heat or a flame \tn % Row Count 18 (+ 8) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{7.1}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Formation of Gas} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{{\bf{Evidence of a Chemical Reaction}}} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{\{\{counter\}\} Change in Color} \tn % Row Count 3 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{7.10 Energy in Chemical Reactions}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Energy Units}} & 1 kilojoule (kJ) = 1000 joules (J) \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} & {\emph{used to show the energy change in a reaction}} \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} {\bf{Heat of Reaction:}} the amount of heat absorbed or released during a reaction that takes place at a constant pressure. & ΔH= H(products) - H(reactants) \tn % Row Count 11 (+ 6) % Row 3 \SetRowColor{white} {\bf{Exothermic Reaction:}} energy is released & {\bf{HEAT IS WRITTEN AS A PRODUCT}} \tn % Row Count 14 (+ 3) % Row 4 \SetRowColor{LightBackground} & -ΔH \tn % Row Count 15 (+ 1) % Row 5 \SetRowColor{white} & the energy of the products is lower than the reactants \tn % Row Count 18 (+ 3) % Row 6 \SetRowColor{LightBackground} {\bf{Endothermic Reaction:}} heat is absorbed & {\bf{HEAT IS WRITTEN AS A REACTANT}} \tn % Row Count 21 (+ 3) % Row 7 \SetRowColor{white} & +ΔH \tn % Row Count 22 (+ 1) % Row 8 \SetRowColor{LightBackground} & the energy of the products is higher than the reactants \tn % Row Count 25 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.44333 cm} x{3.53367 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{7.10 Energy in Chemical Reactions}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Energy Units}} & 1 kilojoule (kJ) = 1000 joules (J) \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} & {\emph{used to show the energy change in a reaction}} \tn % Row Count 4 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.43873 cm} x{2.53827 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Characteristics of Oxidation and Reduction}} \tn % Row 0 \SetRowColor{LightBackground} {\emph{Always Involves}} & {\emph{May Involve}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{{\bf{Oxidation}}} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} Loss of electrons & Addition of oxygen \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} & Loss of hydrogen \tn % Row Count 4 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\bf{Reduction}}} \tn % Row Count 5 (+ 1) % Row 5 \SetRowColor{white} Gain of electrons & Loss of oxygen \tn % Row Count 6 (+ 1) % Row 6 \SetRowColor{LightBackground} & Gain of hydrogen \tn % Row Count 7 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Percent Yield}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Percent yield (\%)}} = & actual yield/theoretical yield x100\% \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} {\bf{Theoretical Yield:}} expected value (calculated) & {\bf{Actual Yield}}: Measured value (mass of the product) (given value) \tn % Row Count 6 (+ 4) % Row 2 \SetRowColor{LightBackground} & {\emph{less than the theoretical yield}} \tn % Row Count 8 (+ 2) % Row 3 \SetRowColor{white} {\bf{How do you find the percent yield of a reaction?}} & {\emph{Step 1}}:State given and needed quantities \tn % Row Count 11 (+ 3) % Row 4 \SetRowColor{LightBackground} & {\emph{Step 2}}: Use coefficients to write mole-mole factors; write molar mass factors. \tn % Row Count 16 (+ 5) % Row 5 \SetRowColor{white} & {\emph{Step 3}}: Calculate the percent yield by dividing the actual yield (given) by the theoretical yield and multiplying the result by 100\%. \tn % Row Count 23 (+ 7) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.38896 cm} x{2.58804 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Gas}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Air is a mixture of}} & 78\% Nitrogen gas, and 21\% Oxygen gas, argon, carbon dioxide, and water vapor \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} {\bf{Kinetic Molecular Theory of Gases}} & helps us understand gas behavior \tn % Row Count 6 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\bf{1. A gas consists of small particles (atoms or molecules) that move randomly with high velocities}}} \tn % Row Count 9 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{{\emph{Gas molecules moving in random directions at high speeds cause a gas to fill the entire volume of a container.}}} \tn % Row Count 12 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\bf{2. The attractive forces between the particles of a gas are usually very small.}}} \tn % Row Count 14 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{{\emph{Gas particles are far apart and fill a container of any size and shape.}}} \tn % Row Count 16 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\bf{3. The actual volume occupied by gas molecules is extremely small compared to the volume that the gas occupies.}}} \tn % Row Count 19 (+ 3) % Row 7 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{{\emph{The volume of the gas is considered equal to the volume of the container. Most of the volume of a gas is empty space, which allows gases to be easily compressed.}}} \tn % Row Count 23 (+ 4) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\bf{4. Gas particles are in constant motion, moving rapidly in straight paths.}}} \tn % Row Count 25 (+ 2) % Row 9 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{{\emph{When gas particles collide, they rebound and travel in new directions. Every time they hit the walls of the container, they exert pressure. An increase in the number or force of collisions against the walls of the container causes an increase in the pressure of the gas.}}} \tn % Row Count 31 (+ 6) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{x{2.38896 cm} x{2.58804 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Gas (cont)}} \tn % Row 10 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\bf{5. The average kinetic energy of gas molecules is proportional to the Kelvin temperature.}}} \tn % Row Count 2 (+ 2) % Row 11 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{{\emph{Gas particles move faster as the temperature increases. At higher temperatures, gas particles hit the walls of the container more often and with more force, producing higher pressures.}}} \tn % Row Count 6 (+ 4) % Row 12 \SetRowColor{LightBackground} {\bf{Atmospheric Pressure}} & higher altitudes = less pressure \tn % Row Count 8 (+ 2) % Row 13 \SetRowColor{white} {\bf{Units for Pressure (P)}} & atmosphere (atm) \tn % Row Count 10 (+ 2) % Row 14 \SetRowColor{LightBackground} & millimeters of mercury (mmHg) \tn % Row Count 12 (+ 2) % Row 15 \SetRowColor{white} & torr (Torr) \tn % Row Count 13 (+ 1) % Row 16 \SetRowColor{LightBackground} & pascal (Pa) \tn % Row Count 14 (+ 1) % Row 17 \SetRowColor{white} {\bf{Units for Volume (V)}} & liters (L) \tn % Row Count 16 (+ 2) % Row 18 \SetRowColor{LightBackground} {\bf{Units for Temperature (T)}} & kelvin (K) \tn % Row Count 18 (+ 2) % Row 19 \SetRowColor{white} & K= 273 + ° C \tn % Row Count 19 (+ 1) % Row 20 \SetRowColor{LightBackground} {\bf{Units for amount of Gas (n)}} & gram (g) \tn % Row Count 21 (+ 2) % Row 21 \SetRowColor{white} & mole (n) \tn % Row Count 22 (+ 1) % Row 22 \SetRowColor{LightBackground} {\bf{Measurement of Gas Pressure}} & P= force/area \tn % Row Count 24 (+ 2) % Row 23 \SetRowColor{white} 1 atm = 760 mmHg = 760 Torr (exact) & 1 atm = 29.9 inHg \tn % Row Count 26 (+ 2) % Row 24 \SetRowColor{LightBackground} 1 mmHg = 1 Torr (exact) & 1atm = 101,325 Pa = 101.325 kPa \tn % Row Count 28 (+ 2) % Row 25 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{1 atm = 14.7 lb/in\textasciicircum{}2\textasciicircum{} (psi)} \tn % Row Count 29 (+ 1) % Row 26 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{**Boy} \tn % Row Count 30 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{The Mole}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Avogadros Number: 6.02 x 10\textasciicircum{}23\textasciicircum{}}} & atoms or particles of that element \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} & number of moles will be a smaller number \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} {\bf{The chemical formula subscripts specify the:}} & Atoms in 1 molecule \tn % Row Count 7 (+ 3) % Row 3 \SetRowColor{white} & Moles of each element in 1 mole \tn % Row Count 9 (+ 2) % Row 4 \SetRowColor{LightBackground} {\bf{How do you calculate the moles of an element in a compound?}} & {\emph{Step 1}}: State the given and needed quantities \tn % Row Count 13 (+ 4) % Row 5 \SetRowColor{white} & {\emph{Step 2}}: Write a plan to convert moles of a compound to moles of an element. \tn % Row Count 17 (+ 4) % Row 6 \SetRowColor{LightBackground} & {\emph{Step 3}}: Write the equalities and conversion factors using subscripts. \tn % Row Count 21 (+ 4) % Row 7 \SetRowColor{white} & {\emph{Step 4}}: Set up the problem to calculate the moles of an element. \tn % Row Count 25 (+ 4) % Row 8 \SetRowColor{LightBackground} {\bf{Molar Mass:}} The quantity in grams that equals the atomic mass of that element & 1 mole of C = 12.01g = 6.02x10\textasciicircum{}23\textasciicircum{} atoms of C {\bf{obtained from the periodic table}} \tn % Row Count 30 (+ 5) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{The Mole (cont)}} \tn % Row 9 \SetRowColor{LightBackground} {\bf{How do you find the molar mass of a compound?}} & Multiply the molar mass of each element by its subscript in the formula and add the results \tn % Row Count 5 (+ 5) % Row 10 \SetRowColor{white} {\bf{Calculations using molar mass}} & Molar mass converts moles of a substance to grams, or grams to moles. \tn % Row Count 9 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{{\bf{Limiting Reactants}}}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Limiting Reactant}} & the reactant that is completely used up \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} & the reactant that does not completely react and is left over is called the {\emph{excess reactant}} \tn % Row Count 7 (+ 5) % Row 2 \SetRowColor{LightBackground} {\bf{How do you find out what is the limiting reactant and how many moles (or grams) of products can be produced?}} & {\emph{Step 1}}: State the given and needed quantities (moles). \tn % Row Count 13 (+ 6) % Row 3 \SetRowColor{white} & {\emph{Step 2}}: Use coefficients to write mole-mole factors \tn % Row Count 16 (+ 3) % Row 4 \SetRowColor{LightBackground} & {\emph{Step 3}}: Calculate the quantity (moles) of product from each reactant, and {\bf{select the smaller quantity (moles) as the limiting reactant.}} \tn % Row Count 24 (+ 8) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}