7.1	
Evidence of a Chemical Reaction	Types of Chemical Reactions
Change in Color	Combination: $\mathrm{A}+\mathrm{B}$-> AB
Formation of Gas (bubbles)	Decomposition: $A B->A+B$
Heat (or a flame) Produced or absorbed	Single Replacement: A + BC -> $A C+B$
Formation of a Solid (precipitate)	Double Replacement: $A B+C D$ -> AD + CB
	Combustion: a carbon containing compound burns in oxygen gas to produce the gases carbon dioxide (C02), water (H20), and energy in the form of heat or a flame
7.1	
Formation of Gas	
Evidence of a Chemical Reaction	
1 Change in Color	
7.10 Energy in Chemical Reactions	
Energy Units	1 kilojoule (kJ) = 1000 joules (J)
	used to show the energy change in a reaction

7.10 Energy in Chemical Reactions (cont)

Heat of Reaction: the	$\Delta \mathrm{H}=$
amount of heat absorbed or	H (products)
released during a reaction	-H (reac-
that takes place at a	tants)
constant pressure.	
Exothermic Reaction: energy is released	HEAT IS
	WRITTEN
	AS A
	PRODUCT

	$-\Delta H$
	the energy
of the	
	products is
lower than	
the	
Endothermic Reaction: heat	
is absorbed	HEAT IS
	WRITTEN
	AS A
	REACTANT
	$+\Delta H$
	the energy
	of the
	products is
higher than	
the	

7.10 Energy in Chemical Reactions
Energy 1 kilojoule (kJ) $=1000$ joules (J)
Units
used to show the energy
change in a reaction

Characteristics of Oxidation and Reduction
Always Involves May Involve

Oxidation	
Loss of electrons	Addition of oxygen
Reduction	
Gain of electrons	Loss of oxygen

Not published yet.

Last updated 2nd November, 2022.
Page 1 of 3 .

Percent Yield

Percent actual yield/theoretical yield yield (\%) x100\%
=
Theore- Actual Yield: Measured value
tical (mass of the product) (given
Yield: value)
expected
value
(calcu-
lated)
less than the theoretical yield

How do

you find
the
percent
yield of a
reaction?
Step 2: Use coefficients to write mole-mole factors; write molar mass factors.

Step 3: Calculate the percent yield by dividing the actual yield (given) by the theoretical yield and multiplying the result by 100%.

Gas	
Air is a	78% mixtrogen gas, and 21% Oixture of
Oxygen gas, argon, carbon dioxide, and water vapor	
Kinetic	helps us understand gas
Molecular	behavior
Theory of	
Gases	
1. A gas consists of small particles (atoms	
or molecules) that move randomly with high	
velocities	

Sponsored by ApolloPad.com

Everyone has a novel in them. Finish Yours!
https://apollopad.com

Gas (cont)

Gas molecules moving in random directions at high speeds cause a gas to fill the entire volume of a container.
2. The attractive forces between the particles of a gas are usually very small.

Gas particles are far apart and fill a container of any size and shape.
3. The actual volume occupied by gas molecules is extremely small compared to the volume that the gas occupies.

The volume of the gas is considered equal to the volume of the container. Most of the volume of a gas is empty space, which allows gases to be easily compressed.
4. Gas particles are in constant motion, moving rapidly in straight paths.
When gas particles collide, they rebound and travel in new directions. Every time they hit the walls of the container, they exert pressure. An increase in the number or force of collisions against the walls of the container causes an increase in the pressure of the gas.
5. The average kinetic energy of gas molecules is proportional to the Kelvin temperature.

Gas particles move faster as the temperature increases. At higher temperatures, gas particles hit the walls of the container more often and with more force, producing higher pressures.

Atmospheric	higher altitudes $=$ less
Pressure	pressure
Units for	atmosphere (atm)
Pressure (P)	

By thandimk
cheatography.com/thandimk/

Gas (cont)	
	millimeters of mercury (mmHg)
	torr (Torr)
	pascal (Pa)
Units for Volume (V)	liters (L)
Units for Temperature (T)	kelvin (K)
	$\mathrm{K}=273+{ }^{\circ} \mathrm{C}$
Units for amount of Gas (n)	gram (g)
	mole (n)
Measurement of Gas Pressure	$\mathrm{P}=$ force/area
$\begin{aligned} & 1 \mathrm{~atm}=760 \mathrm{mmHg}= \\ & 760 \text { Torr (exact) } \end{aligned}$	$1 \mathrm{~atm}=29.9 \mathrm{inHg}$
$\begin{aligned} & 1 \mathrm{mmHg}=1 \text { Torr } \\ & \text { (exact) } \end{aligned}$	$\begin{aligned} & 1 \mathrm{~atm}=101,325 \mathrm{~Pa} \\ & =101.325 \mathrm{kPa} \end{aligned}$
$1 \mathrm{~atm}=14.7 \mathrm{lb} / \mathrm{in}^{2}(\mathrm{psi})$	
**Boy	

$\left.\begin{array}{|l|l|}\hline \text { The Mole } & \text { Avogadros Number: } \\ \hline 6.02 \times 10^{23} & \begin{array}{l}\text { atoms or particles } \\ \text { of that element }\end{array} \\ \text { number of moles } \\ \text { will be a smaller } \\ \text { number }\end{array}\right\}$

Moles of each element in 1 mole

The Mole (cont)

How do you calculate the moles of an element in a compound?

Step 2: Write a plan to convert moles of a compound to moles of an element.

Step 3: Write the equalities and conversion factors using subscripts.

Step 4: Set up the problem to calculate the moles of an element.
Molar Mass: The 1 mole of $\mathrm{C}=12.01 \mathrm{~g}$ quantity in grams $=6.02 \times 10^{23}$ atoms of that equals the atomic mass of that element

How do you find the molar mass of a compound?

	formula and add the results
Calculations using	Molar mass converts moles of a substance
mass	to grams, or grams to moles.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com
$\left.\begin{array}{|ll|}\hline \text { Limiting Reactants } & \\ \hline \text { Limiting Reactant } & \begin{array}{l}\text { the reactant that is } \\ \text { completely used up }\end{array} \\ \text { the reactant that does } \\ \text { not completely react } \\ \text { and is left over is } \\ \text { called the excess } \\ \text { reactant }\end{array}\right\}$

By thandimk
cheatography.com/thandimk/

Not published yet.
Last updated 2nd November, 2022.
Page 3 of 3 .

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

