Cheatography

Chem Chapters 7-9 Cheat Sheet by thandimk via cheatography.com/126648/cs/35132/

7.1	
Evidence of a Chemical Reaction	Types of Chemical Reactions
Change in Color	Combination: A+ B -> AB
Formation of Gas (bubbles)	Decomposition: AB -> A + B
Heat (or a flame) Produced or absorbed	Single Replacement: A + BC -: AC + B
Formation of a Solid (preci- pitate)	Double Replacement: AB+CD -> AD + CB
	Combustion: a carbon containing compound burns in oxygen gas to produce the gases carbon dioxide (C02), water (H20), and energy in the form of heat or a flame
7.1	
Formation	of Gas
Evidence o	f a Chemical Reaction
1 Change i	n Color
7.10 Energ	y in Chemical Reactions
Energy Units	1 kilojoule (kJ) = 1000 joules (J)
	used to show the energy change in a reaction

7.10 Energy in Chen	nical Reac	tions (cont)
Heat of Reaction: the amount of heat abso released during a rea that takes place at a constant pressure.	e orbed or action	ΔH= H(products) - H(reac- tants)
Exothermic Reaction energy is released	:	HEAT IS WRITTEN AS A PRODUCT
		-ΔH
		the energy of the products is lower than the reactants
Endothermic Reaction	on: heat	HEAT IS WRITTEN AS A REACTANT
		+ΔH
		the energy of the products is higher than the reactants
7.10 Energy in Chen	nical Reac	tions
Energy 1 kilojoul Units	e (kJ) = 1(000 joules (J)
used to s change i	show the e n a reactio	energy on
Characteristics of O	kidation an	d Reduction
Always Involves	May Inv	olve
Oxidation		
Loss of electrons	Addition	of oxygen
	Loss of	hydrogen

Reduction

Gain of electrons Loss of oxygen

Gain of hydrogen

By thandimk

cheatography.com/thandimk/

Not published yet. Last updated 2nd November, 2022. Page 1 of 3.

Percent yield (%) =	actual yield/theoretical yield x100%	
Theore- tical Yield: expected value (calcu- lated)	Actual Yield: Measured value (mass of the product) (given value)	
	less than the theoretical yield	
How do you find the percent yield of a reaction?	<i>Step 1</i> :State given and needed quantities	
	Step 2: Use coefficients to write mole-mole factors; write molar mass factors.	
	<i>Step 3</i> : Calculate the percent yield by dividing the actual yield (given) by the theoretical yield and multiplying the result by 100%.	
Gas		
Air is a mixture of	78% Nitrogen gas, and 21% Oxygen gas, argon, carbon dioxide, and water vapor	
Kinetic Molecular Theory of Gases	helps us understand gas behavior	
1. A gas co or molecule velocities	nsists of small particles (atoms es) that move randomly with high	

Sponsored by Readable.com Measure your website readability! https://readable.com

Cheatography

Chem Chapters 7-9 Cheat Sheet by thandimk via cheatography.com/126648/cs/35132/

Gas (cont)

Gas molecules moving in random directions at high speeds cause a gas to fill the entire volume of a container.

2. The attractive forces between the particles of a gas are usually very small.

Gas particles are far apart and fill a container of any size and shape.

3. The actual volume occupied by gas molecules is extremely small compared to the volume that the gas occupies.

The volume of the gas is considered equal to the volume of the container. Most of the volume of a gas is empty space, which allows gases to be easily compressed.

4. Gas particles are in constant motion, moving rapidly in straight paths.

When gas particles collide, they rebound and travel in new directions. Every time they hit the walls of the container, they exert pressure. An increase in the number or force of collisions against the walls of the container causes an increase in the pressure of the gas.

5. The average kinetic energy of gas molecules is proportional to the Kelvin temperature.

Gas particles move faster as the temperature increases. At higher temperatures, gas particles hit the walls of the container more often and with more force, producing higher pressures.

Atmospheric	higher altitudes = les
Pressure	pressure
Units for	atmosphere (atm)
Pressure (P)	

С

By thandimk

cheatography.com/thandimk/

Gas (cont) millimeters of mercury (mmHg torr (Torr) pascal (Pa) Units for Volume (V) liters (L) Units for Temperkelvin (K) ature (T) K= 273 + ° C Units for amount of gram (g) Gas (n) mole (n) Measurement of Gas P= force/area Pressure 1 atm = 760 mmHg = 1 atm = 29.9 inl-760 Torr (exact) 1 mmHg = 1 Torr 1atm = 101,325 = 101.325 kPa (exact) 1 atm = 14.7 lb/in² (psi) **Boy

Avogadros Number:
6.02 x 10²³atoms or particles
of that elementnumber of moles
will be a smaller
numbernumber of moles
will be a smaller
numberThe chemical
formula subscripts
specify the:Atoms in 1
moleculeMoles of each
element in 1 mole

	The Mole (cont)	
3)	How do you calculate the moles of an element in a compound?	<i>Step 1</i> : State the given and needed quantities
		<i>Step 2</i> : Write a plan to convert moles of a compound to moles of a an element.
		<i>Step 3</i> : Write the equalities and conversion factors using subscripts.
Hg		<i>Step 4</i> : Set up the problem to calculate the moles of an element.
Pa	Molar Mass: The quantity in grams that equals the atomic mass of that element	1 mole of C = 12.01g = 6.02×10^{23} atoms of C obtained from the periodic table
es	How do you find the molar mass of a compound?	Multiply the molar mass of each element by its subscript in the formula and add the
	Calculations using molar mass	results Molar mass converts moles of a substance to grams, or grams to moles.

Not published yet. Last updated 2nd November, 2022. Page 2 of 3.

Sponsored by Readable.com Measure your website readability! https://readable.com

Cheatography

Chem Chapters 7-9 Cheat Sheet by thandimk via cheatography.com/126648/cs/35132/

Limiting Reactants	
Limiting Reactant	the reactant that is completely used up
	the reactant that does not completely react and is left over is called the <i>excess</i> <i>reactant</i>
How do you find out what is the limiting reactant and how many moles (or grams) of products can be produced?	<i>Step 1</i> : State the given and needed quantities (moles).
	Step 2: Use coeffi- cients to write mole- mole factors
	Step 3: Calculate the quantity (moles) of product from each reactant, and select the smaller quantity (moles) as the limiting

С

By thandimk

cheatography.com/thandimk/

reactant.

Not published yet. Last updated 2nd November, 2022. Page 3 of 3. Sponsored by Readable.com Measure your website readability! https://readable.com