Cardiac Muscle Cheat Sheet Cheat Sheet by thait via cheatography.com/213578/cs/46485/ | Anatomy of t | he Heart | |---------------------------------------|--| | 4
Chambers
Blood
Circulation | Right AV valve (tricuspid) -> pulmonary(semilunar) valve - > left AV valve/bicuspid/mitral -> aortic/semilunar valve | | Pulmonary circulation | Chambers on the right pump oxygen poor blood to the lungs | | Systemic
Circulation | Chambers on the left pump oxygen rich blood to body tissues | | Right
atrium | receives oxygen poor blood
from inferior and superior
vena cava | | Right
Ventricle | receives oxygen poor blood
from the right atrium and
pumps blood through the
pulmonary valve into
pulmonary artery | | Left atrium | receives oxygen rich blood
from pulmonary circulation via
the left and right pulmonary
veins | | Left
Ventricle | receives oxygen rich blood
from left atrium and pumps
blood through aortic valves
into aorta | | Chordae
Tendinae | tendonous fibers attached to
the inside edges of AV valves
and base of ventricles via
papillary muscles, prevents
valves from everting | | Connective
Tissue | separates atria for ventricles providing attachment of heart valves | | Electrical Acti | ivity | |------------------------|--| | Autorhyth-
miticity | heart muscle is capable of
generating its own rhythmic
electrical acticity | | Pacemaker
activity | spontaneous, rhythmic generation of electrical impulses by specialized heart cells (like those in the sinoatrial node) that initiate and regulate the heartbeat, ensuring consistent cardiac contraction and blood circulation | | SA Node | generates 70 AP per min,
located in the wall of the right
atrium near superior vena
cava | | AV Node | 50 AP per minute, located at
the base of the right atrium
follows the SA node | | Bundle of
His | specialized pacemaker cells
originating at AV node
projecting into left and rightv-
entricles | | Purkinje
Flbers | 30 AP per min, spread throughout ventricular myocardium | | Interatrial
Pathway | specialized cardiac cells that
conducts pacemaker activity
from the right atrium to the
left atrium | | Internodal
Pathway | pathway of specialized
cardiac cells that conducts
pacemaker activity from SA
to AV nodes | | AV nodal
delay | Pacemaker activity is
conducted relatively slowly
through the AV node
resulting in a delay of
approximately 100 ms | | Electrocardiogram Waveforms | | |-----------------------------|--------------------------------------| | P wave | Depolarization of the atria | | QRS complex | depolarization of the ventricles | | T wave | repolarization of the ventricles | | PR segment | represents AV nodal delay | | Electrocardiogram Waveforms | | | R | © 2001 Broda-Cole - Thomson Learning | | R 03011 Broket Cirle - Tromson Learning | |--| | P P P | | | | PR ST TP interval | | segment segment | | P wave = Atrial depolarization | | PR segment = AV nodal delay | | QRS complex = Ventricular depolarization (atria repolarizing simultaneously) | | ST segment = Time during which ventricles are contracting and emptying | | T wave = Ventricular repolarization | | TP interval = Time during which ventricles are relaxing and filling | | | | Mechanica | al Events of the Cardiac Cycle | |--|--| | Systole | Contracting and emptying | | Diastole | relaxation and filling | | End
Dastolic
Volume | volume of blood in chamber at
end of diastole, equivalent to
max amount og blood chamber
holds during cycle | | Isovol-
umetric
ventri-
cular
contra-
ction | period of time during contra-
ction when chambers stay
closed increasing chamber
pressure during this periods | | End
systolic
volume | amount of blood remaining in the chamber at the end of systole | By **thait** cheatography.com/thait/ Not published yet. Last updated 27th May, 2025. Page 1 of 3. Sponsored by **Readable.com**Measure your website readability! https://readable.com ## Cardiac Muscle Cheat Sheet Cheat Sheet by thait via cheatography.com/213578/cs/46485/ | Mechanical (cont) | Events of the Cardiac Cycle | |---|--| | Stroke
volume | amount of volume blood pumped out of the chamber with each contraction | | Stroke
volume
equation | EDV - ESV | | Isovol-
umetric
ventricular
relaxation | period of time during
relaxation when the chamber
remains closed and therefore
no blood can enter or leave,
chamber pressure decreases
then | | Lub | closure of AV valves | | Dup | Closing of the semilunar valves | | Murmurs | abnormal heart sounds from
turbulent flow of blood through
malfunctioning valves | | Stenotic valve | stiff narrow valve that doesn't open completely , abnormal whistling sound | | Insufficient valve | structurally damaged valve
that does not close, abnormal
swishing sound | | Rheumatic fever | an auto-immune disease
triggered by streptococcal
bacteria that leads to valvular
stenosis and insufficiency | | Regulation | of Cardiac Output (cont) | |---|--| | Stroke
Volume | regulated intrinsically by volume of venous blood returning to the ventricles and extrinsically by the sympathetic nervous system | | Parasy-
mpa-
thetic | Vagus Nerve to the SA and AV nodes and to the contractile cells of the atria | | Parasy-
mpa-
thetic
NTs | ACh and Muscarinic receptors | | Effects
of
Parasy-
mpa-
thetic
Release
of ACh | Increases permeability of SA nodal cells to K+ in the SA node leading to greater hyperpolarization and slowing of the K component of the pacemaker potential, in AV node increases permeability of AV nodal to K and in atrial contractile cells, shortens duration of cardiac fiber AP reducing Ca++ permeability | | Sympat-
hetic | Norepinephrine through beta adrenergic receptors | | Effects
of
Sympat-
hetic
influence
on HR | SA node - less hyperpolariz-
ation, acceleration of the K
component, av node slowing
increase in Ca++ permeability | | Stroke
Volume
Regulation | Extrinsically regulated by neural control and intrinsically by the volume of venous blood returning to heart | |--------------------------------|--| | Intrinsic
control | direct correlation between
end-diastolic volume and
stroke volume | | Heart
failure | inability of CO to meet emands of the body | | Basic Orga | nization | | Arteries | composed of large vessels that carry blood from the heart | | Arterioles | small diameter vessels that arise from the branching of arteries | | Capill-
aries | smallest diameter vessels that are formed when arterioles branch | | Venules | the vessels that form when capillaries join together | | Veins | large diameter vessels formed by merging of venules | | Microc-
irculation | name given to collection of arterioles, capillaries and venules | | Blood Flow | | | Blood | determined by pressure | Regulation of Cardiac Output (cont) flow gradient in the vessels and Regulation of Cardiac Output resistance to flow caused by friction and viscosity of the blood F=deltaP/R Blood flow equation By thait cheatography.com/thait/ Not published yet. Last updated 27th May, 2025. Page 2 of 3. Sponsored by Readable.com Measure your website readability! https://readable.com ## Cardiac Muscle Cheat Sheet Cheat Sheet by thait via cheatography.com/213578/cs/46485/ | Blood Flow (| cont) | |----------------------|---| | F | Flow rate, volume of blood passing through a vessel per unit of time | | Delta P | Pressure gradient - difference
in pressure between the
beginning and end of the
vessel | | Resistance | depends on blood viscosity, vessel length, vessel radius | | Blood
viscocity | friction developed in blood
determined by the concen-
tration of plasma proteins and
number of circulating RBCs | | Vessel
length | friction between blood and the inner surface of a vessel is proportional to the vessel length | | Vessel
radius | friction between blood and the inner surface of a vessel is inversely proportional to the 4th power of the vessel radius | | Pressure
resovoir | Serves as a driving force
during ventricular diastole,
elasticity of the of artery walls
smooth muscle, collagen,
elastin | | Pulse
Pressure | pressure difference between systolic pressure and diastolic pressure | | Mean
Arterial | pressure that is monitored and regulated by BP reflexes | | Intrinsic (loc | al control) | |--------------------------------|---| | intrinsic
control | factors intrinsic to an organ or tissue | | Local
metabolic
changes | factors derived from metabolic activity causing dilation. smooth muscle tone is controlled by release of mediators such as NO | | O2
concen-
tration | reduced O2 during metabolic demand | | CO2
concen-
tration | increased CO2 during metabolic demand | | рН | increases in CO2 and or lactic acid lowers blood pH | | Extrac-
ellular K+
conc. | increased neuronal activity
that outpaces the Na+/K+
ATPase | | Osmolarity | increased solute concen-
tration resulting from
metabolic activity | | Adenosine | released in Cardiac muscle in response to metabolic demand | | Prostagla-
ndins | produced from teh metabolism of faty acids | | Histamine release | release when tissues are
damaged and leads to vasodi-
lation accompanying an
inflammatory response | | local
physical
control | temperature and myogenic response | | Temper-
ature | arteriolar smooth muscle tone is inversely proportional to temperature | | Myogenic response | arteriolar smooth muscle responds to stretch by contracting | Pressure By **thait** cheatography.com/thait/ Not published yet. Last updated 27th May, 2025. Page 3 of 3. Sponsored by **Readable.com**Measure your website readability! https://readable.com