
Cheatography

System Overview

The three principal components: Heart (the pump) Blood vessels (the pipes) Blood (the fluid to be moved) Functions: Supply oxygen/nutrients, remove waste, regulate temperature, distribute hormones, immuno-vigilance

Comparison: PM vc CC

Electrical Activity & Autorhythmicity

Autorhythmic Cells: 1% of heart, initiate APs

Contractile Cells: 99%, mechanical pumping

Pacemaker Activity:-

1. Funny channels: (Na* in) and K⁺ channels close.

2. T-type Ca2+ channels open

3. Threshold: L-type Ca2+ channels open

4. Repolarization: K⁺ channels open

Note that: : Long refractory period coincides with plateau (Prevents summation/tetanus)

Contractile Cell Action Potential

Type of Cell: Contractile (99% of cardiac cells)

Resting potential: -90 mV

1. Depolarization: Fast Na⁺ channels open

2. Initial Repolarization: Transient K⁺ channels open

3. Plateau: L-type Ca2+ channels open, reduced K⁺ efflux

4. Repolarization: Regular K⁺ channels open

Return to Rest: Leaky K* channels restore resting potential

Conduction Pathway

- 1. SA nodes
- 2. AV nodes
- 3. Bundle of his
- 4. Right/left bundle branches
- 5. Purkinje fibers

Structure of the Heart & bloodflow

n (upper body) (lower body)

Cardiac Cycle & Heart Sounds Phases:

S1 ("lub") = AV valves close

S2 ("dub") = Aortic/pulmonary valves close

Murmur: Stenotic or insufficient valves → turbulence

Phases: Mid-to-late diastole → Ventricular systole → Early diastole

Valve Disorders

Stenotic = valve doesn't open completely

însufficient = valve doesn't close completely

Causes murmurs (turbulent flow)

Pressure

Pulse Pressure = Systolic -Diastolic

Mean Arterial Pressure (MAP) = Diastolic + ¹/₃(Pulse Pressure)

Measured by: Sphygmomanometer (Korotkoff sounds)

Blood pressure during dynamic exercise

Systolic increases

Diastolic ~same

MAP increases progressively

Blood Flow

Cardiac Output

CO = Heart Rate × Stroke Volume

Stroke Volume = EDV - ESV

Regulation: 2 Types

Type 1: Intrinsic: Frank-Starling Law = Increased venous return increases ventricular filling (increased EDV), which results in a larger stroke volume due to the length-tension relationship.

Extrinsic: Sympathetic stimulation \rightarrow \uparrow , contractility \rightarrow \uparrow SV

MAP Regulation

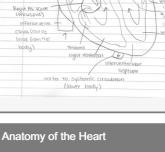
MAP = C.O x TPR

Contributors: Stroke vol...Heart rate, Blood Vol., Blood Viscosity, Arteriolar Radius, Sympathetic/-Parasympathetic activity

ECG Components

P wave: Atrial depolarization

PR segment: AV node delay


QRS complex: Ventricular depolarization (atrial repolarization hidden)

T wave: Ventricular repolarization

TP interval: Ventricles relaxing/filling

ST segment: Ventricles contracting/emptying

ECG wave

Pacemaker: gradual depolarization, no true resting potential, Ca2+dependent spike

Contractile: stable resting potential, Na*dependent spike, plateau from L-type Ca²⁺

Heart Wall Layers:

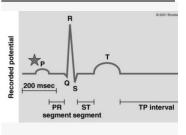
Endocardium: Inner layer, lines chambers

Myocardium: Cardiac muscle layer, responsible for contraction

Epicardium: Outer layer, also part of pericardium

Pericardium: Protective sac around the heart

Valve Composition:


Connective tissue: Mostly collagen, provides structural support

Endothelium: Inner lining of heart and blood vessels

Heart Structure & Blood Flow

4 Heart Valves: Tricuspid, Pulmonary, Mitral, Aortic Flow Sequence: Right atrium \rightarrow Right ventricle \rightarrow Lungs \rightarrow Left atrium \rightarrow Left ventricle \rightarrow Body Oxygenation: Pulmonary arteries = O₂poor, Pulmonary veins = O2-rich Flow influenced by: Radius (power of 4 effect), Length, Viscosity

Pressure gradient = Flow × Resistance

By tfayed

cheatography.com/tfayed/

Published 27th May, 2025. Last updated 27th May, 2025. Page 2 of 3.

Sponsored by Readable.com Measure your website readability! https://readable.com

Cheatography

Cardiovascular System Cheat Sheet by tfayed via cheatography.com/213577/cs/46484/

ECG Abnormalities

Rate: Tachycardia

Rhythm: Extrasystole, ventricular fibrillation

Conduction: Complete heart block

Myopathies: Myocardial infarction

Capillary exchange

Lipid-soluble substances: pass through endothelial cells

Small water-soluble substances: pass through pores

Exchangeable proteins: moved via vesicular transport

Plasma proteins: generally cannot cross capillary wall

Net Filtration Pressure (NFP)

NFP = Capillary Hydrostatic Pressure – Blood Colloid Osmotic Pressure

Affects direction of fluid movement (filtration vs. reabsorption)

Positive NFP = fluid pushed out (filtration)

Negative NFP = fluid pulled in (reabsorption)

Baroreceptor Reflex

Stimulus: ↑ or ↓ blood pressure

Sensors: Carotid sinus and aortic arch

2 effects can occur:

- \uparrow BP = \uparrow afferent firing = \downarrow HR,
- ↓ contractility & vasodilation
- \downarrow BP = \downarrow afferent firing = \uparrow HR,
- \uparrow contractility & vasoconstriction

By tfayed

cheatography.com/tfayed/

ì	/eii	15	CK (vei	iuu	5 П	elu	

Valves prevent backflow Factors that facilitate return: Sympathetic stimulation, Skeletal muscle pump, Respiratory activity, Increased blood volume.

Exercise Physiology: Cardiovas-

cular Response

Systole and diastole both decrease, but diastole decreases more Systolic & MAP increase; diastolic remains about the same Cardiac output shifts to muscles, heart, skin

> Published 27th May, 2025. Last updated 27th May, 2025. Page 3 of 3.

Sponsored by Readable.com Measure your website readability! https://readable.com