

Cardiovascular System Cheat Sheet by tfayed via cheatography.com/213577/cs/46484/

System Overview

The three principal components: Heart (the pump) Blood vessels (the pipes) Blood (the fluid to be moved) Functions: Supply oxygen/nutrients, remove waste, regulate temperature, distribute hormones, immuno-vigilance

Comparison: PM vc CC

Electrical Activity & Autorhythmicity

Autorhythmic Cells: 1% of heart, initiate APs

Contractile Cells: 99%, mechanical pumping

Pacemaker Activity:-

- 1. Funny channels: (Na* in) and K+ channels close.
- 2. T-type Ca2+ channels open
- 3. Threshold: L-type Ca2+ channels open
- 4. Repolarization: K+ channels open

Note that: : Long refractory period coincides with plateau (Prevents summation/tetanus)

Contractile Cell Action Potential

Type of Cell: Contractile (99% of cardiac cells)

Resting potential: -90 mV

- 1. Depolarization: Fast Na⁺ channels open
- 2. Initial Repolarization: Transient K+ channels open
- 3. Plateau: L-type Ca2+ channels open, reduced K* efflux
- 4. Repolarization: Regular K⁺ channels open

Return to Rest: Leaky K+ channels restore resting potential

Pacemaker vs. Cardiac cell

Conduction Pathway

- 1. SA nodes
- 2. AV nodes
- 3. Bundle of his
- 4. Right/left bundle branches
- 5. Purkinje fibers

Structure of the Heart & bloodflow

Anatomy of the Heart

Cardiac Cycle & Heart Sounds Phases:

S1 ("lub") = AV valves close

S2 ("dub") = Aortic/pulmonary valves close

Murmur: Stenotic or insufficient valves → turbulence

Phases: Mid-to-late diastole → Ventricular systole → Early

Stenotic = valve doesn't open

Pulse Pressure = Systolic -Diastolic

Mean Arterial Pressure (MAP) = Diastolic + 1/3 (Pulse Pressure)

Measured by: Sphygmomanometer (Korotkoff sounds)

Blood pressure during dynamic exercise

Systolic increases

Diastolic ~same

MAP increases progressively

Blood Flow

Cardiac Output

CO = Heart Rate × Stroke Volume

Stroke Volume = EDV - ESV

Regulation: 2 Types

Type 1: Intrinsic: Frank-Starling Law = Increased venous return increases ventricular filling (increased EDV), which results in a larger stroke volume due to the length-tension relationship.

Extrinsic: Sympathetic stimulation $\rightarrow \uparrow$, contractility $\rightarrow \uparrow$ SV

MAP Regulation

 $MAP = C.O \times TPR$

Contributors: Stroke vol..Heart rate, Blood Vol., Blood Viscosity, Arteriolar Radius, Sympathetic/-Parasympathetic activity

ECG Components

P wave: Atrial depolarization

PR segment: AV node delay

QRS complex: Ventricular depolarization (atrial repolarization hidden)

T wave: Ventricular repolarization

TP interval: Ventricles relaxing/-

ST segment: Ventricles contracting/emptying

ECG wave

Pacemaker: gradual depolarization, no true resting potential, Ca²⁺dependent spike Contractile: stable resting potential, Na*dependent spike, plateau from L-type Ca²⁺ Heart Wall Layers:

Endocardium: Inner layer, lines

chambers

Myocardium: Cardiac muscle layer, responsible for contra-

ction

Epicardium: Outer layer, also

part of pericardium

Pericardium: Protective sac

around the heart

Valve Composition:

Connective tissue: Mostly collagen, provides structural

support

Endothelium: Inner lining of heart and blood vessels

Flow influenced by: Radius (power of 4 effect), Length, Viscosity

Pressure gradient = Flow × Resistance

Heart Structure & Blood Flow

4 Heart Valves: Tricuspid,
Pulmonary, Mitral, Aortic Flow
Sequence: Right atrium → Right
ventricle → Lungs → Left atrium
→ Left ventricle → Body Oxygenation: Pulmonary arteries = O₂poor, Pulmonary veins = O₂-rich

Published 27th May, 2025. Last updated 27th May, 2025. Page 2 of 3. Sponsored by **Readable.com**Measure your website readability!
https://readable.com

Cardiovascular System Cheat Sheet by tfayed via cheatography.com/213577/cs/46484/

ECG Abnormalities

Rate: Tachycardia

Rhythm: Extrasystole, ventri-

cular fibrillation

Conduction: Complete heart

block

Myopathies: Myocardial

infarction

Capillary exchange

Lipid-soluble substances: pass through endothelial cells

Small water-soluble substances: pass through pores

Exchangeable proteins: moved via vesicular transport

Plasma proteins: generally cannot cross capillary wall

Veins & Venous Return

Valves prevent backflow

Factors that facilitate return:

Sympathetic stimulation, Skeletal muscle pump, Respiratory activity, Increased blood volume.

Exercise Physiology: Cardiovascular Response

Systole and diastole both decrease, but diastole decreases more

Systolic & MAP increase; diastolic remains about the

Cardiac output shifts to muscles, heart, skin

Net Filtration Pressure (NFP)

NFP = Capillary Hydrostatic Pressure - Blood Colloid Osmotic Pressure

Affects direction of fluid movement (filtration vs. reabsorption)

Positive NFP = fluid pushed out (filtration)

Negative NFP = fluid pulled in (reabsorption)

Baroreceptor Reflex

Stimulus: \uparrow or \downarrow blood pressure

Sensors: Carotid sinus and

aortic arch

2 effects can occur:

↑ BP = ↑ afferent firing = \downarrow HR,

↓ contractility & vasodilation

↓ BP = ↓ afferent firing = ↑ HR,

↑ contractility & vasoconstriction

By **tfayed** cheatography.com/tfayed/

Published 27th May, 2025. Last updated 27th May, 2025. Page 3 of 3. Sponsored by Readable.com Measure your website readability! https://readable.com