Organic Chemistry Exam 1 Cheat Sheet by teganski via cheatography.com/211266/cs/45736/

Known Read	tion Pathways		
Reaction Type	Name	Functional Outcome	Key Reagents
Oxidation			
	Alcohol Oxidation	1° OH → Aldehyde/Carboxylic acid 2° OH → Ketone	PCC (mild), CrO ₃ /H ₂ SO ₄ (strong), KMnO ₄
	Ozonolysis	Cleaves Alkenes \rightarrow Aldehydes/Ketones	2. O ₃ 2. (CH ₃) ₂ S or Zn/H ₂ O
	Benzylic Oxidation	Benzylic carbon \rightarrow Carboxylic acid	KMnO ₄ , heat
Reduction			
	Catalytic Hydrogenation	Alkene/Alkyne → Alkane	H ₂ , Pt/Pd/Ni
	Poisioned Hydrogenation	Alkyne → Cis-Alkene	H ₂ , Lindlar's Catalyst
	Dissolving Metal Reduction	Alkyne → Trans-Alkene	Na, NH ₃
	Carbonyl Reduction	Aldehyde → 1° OH Ketone → 2° OH	NaBH ₄ or LiAlH ₄
Addition			
	Hydrohalogenation	Markovnikov addition of X	HX
	Hydration	Markovnikov addition of OH	H ₂ O, H ₁ SO ₄
	Hydroboration-Oxidation	Anti-Markovnikov addition of OH	1. BH ₃ , THF 2. H ₂ O ₂ , NaOH
	Halogenation	Anti-Addition of X-X	x ₂
Cyclization	Hydrogenation	Syn-Addition of H-H	H ₂ , Pd/Pt
o yon 2 duon	Epoxidation	Alkene → Epoxide	mCPBA
	Halohdrin Cyclization	Halohydrin → Epoxide	X ₂ , H ₂ O to NaOH
Substitution			
	S _N 1	Forms Carbocation; Racemic	Weak nucleophile, Polar protic solvent
	S _N 2	Inversion of Configuration	Strong nucleophile, polar aprotic solvent
Elimination			
	E1	Carbocation intermediate, Zaitsev's Rule	Weak base, polar protic solvent
С	By teganski cheatography.com/teganski/	Published 24th February, 2025. Last updated 2nd March, 2025. Page 1 of 8.	Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

Organic Chemistry Exam 1 Cheat Sheet by teganski via cheatography.com/211266/cs/45736/

Known Reaction Pathways (cont)				
E2	Concerted, anti-periplanar	Strong base (NaOEt, NaOMe, tBuOK)		
C-C Bond Formation				
Grignard Reaction	Adds R group to carbonyl	RMgX		
Protecting Groups				
Alcohol Protection	$ROH \rightarrow ROTMS$	TMSCI, pyridine		
Alcohol Deprotection	$ROTMS \to ROH$	TBAF		

Starting Material → Alkane					
Name	Reagents	Regiochemistry	Stereochemistry	Functional Outcome	Mechanism
Radical Haloge- nation	X_2 , hv or heat	Tertiary > Secondary > Primary Selectivity	Racemic (if chiral)	Alkyl Halide	*
Allylic Bromin- ation	NBS, hv (or heat), CCl ₄	Selective for <i>allylic position</i> (next to a C=C bond)	Mixture if allylic radical is symmetric	Allylic Bromide	*
Benzylic Bromin- ation	NBS, hv (or heat), CCl ₄	Selective for *benzylic	None, unless chiral center formed	Benzylic Bromide	*
Benzylic Oxidation	1. KMnO ₄ or Na ₂ Cr ₂ O ₇ 2. H ₂ SO ₄ , heat	Oxidation occurs only at the <i>benzylic carbon</i>	None	Carboxylic acid	

Starting Material → Alke	ene				
Name	Reagents	Regiochemistry	Stereochemistry	Functional Outcome	Mechanism
Hydrohalogenation (HX Addition)	HX ^(HCI, HBr, HI)	Markovnikov (X attaches to more substituted carbon)	Racemic	Alkyl Halide	*

By **teganski** cheatography.com/teganski/ Published 24th February, 2025. Last updated 2nd March, 2025. Page 2 of 8.

Organic Chemistry Exam 1 Cheat Sheet by teganski via cheatography.com/211266/cs/45736/

Starting Material → Alkene (cont)				
Hydrodrohalogenation (HX Addition with Peroxide)	HBr, ROOR ^(peroxide)	Anti-Markovnikov (X attaches to less substituted carbon)	Racemic	Aklyl Halide *
Acid-Catalyzed Hydration	H_2SO_4 , H_2O (or H_3O^+)	Markovnikov	Racemic	Alcohol
Oxymercuration-Demurcuration	1. Hg(OAc) ₂ , H ₂ O 2. NaBH ₄	Markovnikov	Anti	Alcohol
Hydroboration-Oxidation	1. BH ₃ , THF 2. H ₂ O, NaOH	Anti-Markovnikov	Syn	Alcohol
Halogenation (X ₂ Addition)	X ₂ ^(Br₂, Cl₂)	None	Anti	Vicinal Dihalide
Halohydrin Formation	X ₂ , H ₂ O	Markovnikov	Anti	Halohydrin
Hydrogenation	H ₂ , Pt/Pd/Ni	None	Syn	Alkane
Dihydroxylation (Syn)	OsO_4 or $KMnO_4$ (cold, dilute), NaHSO ₃	None	Syn	Vicinal Diol
Dihydroxylation (Anti)	1. mCPBA 2. H ₃ O ⁺	None	Anti	Vicinal Diol

By teganski

cheatography.com/teganski/

Published 24th February, 2025. Last updated 2nd March, 2025. Page 3 of 8. Sponsored by CrosswordCheats.com

Learn to solve cryptic crosswords! http://crosswordcheats.com

Organic Chemistry Exam 1 Cheat Sheet by teganski via cheatography.com/211266/cs/45736/

Starting Material → Alkene (cont)					
Ozonlysis	1. O ₃		None	None Aldehyde/Ketone	
	2. Me ₂ S (DMS) or Zn/H ₂ O				
Starting Material → Alkyr	ne				
Name	Reagents	Regiochemistry	Stereochemistr	y Functional Outcome	Mechanism
Hydrohalogenation	HX ^(HCI, HBr, HI)	Markovnikov	None	Alkyl Dihalide	*
(HX Addition)	(1 or 2 equivalents)				
Halogenation (H ₂ Addition	bn) $X_2^{(Br_2, Cl_2)}$	None	Anti	Vicinal Tetrahalide	*
	(1 or 2 equivalents)				
Acid-Catalyzed Hydratio	n HgSO ₄ ; H ₂ SO ₄ , H ₂ O	Markovnikov	None	Enol \rightarrow Ketone ^(tautomerization)	*
Hydroboration-Oxidation	1. 9-BBN or BH ₃ , THF	Anti-Markovnikov	Syn	Enol → Aldehyde ^(tautomerization)	
	2. H ₂ O ₂ , NaOH				
Hydrogenation	H ₂ , Pt/Pd/Ni	None	Syn	Alkane	

nyarogonatori	12, 1 01 0,101	Hono	Cyn	, incerto
Poisioned Hydrogenation	H ₂ , Lindlar's catalyst	None	Syn	Cis-alkan
Dissolving Metal Reduction	Na^0 or Li ⁰ ; NH_3	None	Anti	Trans-alkene
Ozonolysis	1. O ₃ 2. H ₂ O	None	None	Carboxylic acid (CO ₂ if terminal)

Starting M	laterial → Alcohol				
Name	Reagents	Regiochemistry	Stereochemistry	Functional Outcome	Mechanism

By **teganski**

cheatography.com/teganski/

Published 24th February, 2025. Last updated 2nd March, 2025. Page 4 of 8.

Starting Material → Alcohol (cont)					
Oxidation (^{Primary → Aldehyde)}	PCC/PDC, CH_2Cl_2 or (COCl_2), DMSO; Et_3N, CH_2Cl_2 (-78 to 22°C)	N/A	N/A	Aldehyde	*
Oxidation (Primary → Carboxylic Acid)	1. Na ₂ Cr ₂ O ₇ 2. H ₂ SO ₄ , H ₂ O	N/A	N/A	Carboxylic acid	*
Williamson Ether Synthesis	1. NaH (or KH), 15-Crown-5 (or 18-C-6) 2. RX	N/A	N/A	Ether	*
Protecting Alcohol	TMSCI in Et ₃ N (or Pyridine)	None	Retained	Converts -OH to OTMS) -
Deprotecting Alcohols	TBAF or H_3O^+	Removes silly group from OH	Retained	Restores -OH	

C

By **teganski**

cheatography.com/teganski/

Published 24th February, 2025. Last updated 2nd March, 2025. Page 5 of 8.

Starting Material → Alcohol (cont)						
Intramolecular W	illiamson Ether Synthesis	1. X ₂ ^(Br₂ or Cl₂) , H ₂ O 2. NaOH ^(or NaH, NaNH₂, KOH)	1. Markovnivkov 2. None	1. Anti 2. Inversion	Converts halohydrin	→ Epoxide
Secondary → Ketone	PCC/PDC, Swern, or Jone	s Oxidation				
Starting Material	→ Epoxide					
Name	Reagents	Regiochemis	try	Stereochemistry	Functional Outcome	Mechanism
Acidic Opening	HX H ₂ O, H ₂ SO ₄ ROH (or RSH), H ₂ SO ₄	More subs	tituted carbon attack	Anti	Vicinal Diol	*
Basic Opening	1. NaCN (or NaSR, RMgE 2. H ₂ O (or NaOH)	3r, LiAlH ₄ , NaN ₃ Less subsi	ituted carbon attack	Anti	Vicinal Diol	*

Ranking Radical Stability	
1. Benzylic/Allylic Radical	s [MOST STABLE]
2. Tertiary (3°) Radicals	
3. Secondary (2°) Radical	s
4. Primary (1°) Radicals	
5. Methyl Radicals	
Key Factors Affecting Sta Resonance Stabilization (Non-resonance stablized)	
Hyperconjugation (More alkyl groups donate elect	tron density)
Inductive Effects (Electron-withdrawing groups d	estabilize)
Arrow Pushing in Radical	Reactions
Fishhook Arrows → move	ment of 1 electron
Initiation → arrows depict cleavage	homolytic
Propagation \rightarrow 1 radical real another	eacts to form
Termination → 2 radicals of stable molecule	combine to form a
Number of Unique Produc	cts
NBS (Allylic Bromination)	Cl₂/h∨ (Radical Chlori- nation)
Selective Only abstracts the allylic hydrogen	<i>Less selective</i> attacks all possible C-H bonds
Favors one major product due to resonance stabilization	More radical products due to no preference
Highly Selective →	Non-selective \rightarrow

Synthesis		
1. Identify Target Molecule	Determine functional groups & backbone	What is the most complex feature?
2. Work Backward	Identify possible precursors	What reactions introduce those functional groups?
3. Select Key Transf- ormations	Use known reaction pathways	Oxidation, Reduction, Substitution, Addition, Elimination
4. Consider Stereo- & Regio- Chemistry	Identify selective pathways	Anti vs Syn, Markovnikov vs Anti-Mark- ovnikov
5. Check for Side Reactions	Minimize unwanted byproducts	Use protecting groups if necessary
6. Verify Pathway	Double check feasibility & efficiency	Are reagents compatible? Do steps make sense?

Starting Material → Ether		
Name	Reagents	Functional
		Outcome
Acidic	xsHX ^(HBr or HI)	Alkyl
Cleavage	in heat	Halide

Oxidation State of Carbons
$\textbf{C-H} \text{ bond} \rightarrow \text{carbon gains -1}$ per hydrogen
C-C bond \rightarrow no change (0)
C-X bond \rightarrow carbon loses +1 per electrone-
gative atom

The **oxidation state** of a carbon atom depends on its **bonds** to atoms of different electronegativities

NMR	
¹ H NMR	¹³ C NMR
Chemical Shift	Chemical Shift Trends
Trends	
0-2 ppm →	0-50 ppm → Alkane
Alkane	
2-3 ppm →	50-100 ppm → Alcohol,
Allylic,	ether, alkynes
benzylic,	
alkynyl	
4-6 ppm →	100-150 ppm → Aromatic,
Alkene	alkene
6-8 ppm →	150-200 ppm Carbonyl
Aromatic	(ketone, aldehyde,
	carboxylic acid)
9-10 ppm →	
Aldehyde	
10-12 ppm →	
Carboxylic acid (broad)	
Splitting Patterns (n+1 rule)	
Singlet \rightarrow no adjacent protons	
Doublet → 1 adjacent proton	
Triplet → 2 adjacent protons	

Terms to Know
C≡C, C≡N → ~2100-2200 cm ⁻¹
C=C (Alkene) → ~1650 cm ⁻¹
C=O (Carbonyls) \rightarrow ~1700 cm ⁻¹
C-H (Alkanes) → 2800-3000 cm ⁻¹
O-H (Alcohol) \rightarrow 3200-3600 cm ⁻¹ (broad)
Key Peaks

IR Spectroscopy

Markovnikov's Rule →	Geminal $\rightarrow 2$
addition reactions proton	atoms
added to the carbon with	bonded to the
the most hydrogen atoms	<i>same side</i> of
attached	the carbon

Major product at most

stable radical site

By teganski cheatography.com/teganski/

Multiple

products

Published 24th February, 2025. Last updated 2nd March, 2025. Page 7 of 8.

Organic Chemistry Exam 1 Cheat Sheet by teganski via cheatography.com/211266/cs/45736/

Terms to Know (cont)	
Anti-Markovnivkov's Rule → addition reactions proton added to the <i>carbon</i> with the least hydrogen atoms attached	Vicinal → 2 atoms bonded to <i>same</i> carbon
Zaitsev's Rule → <i>elimination</i> <i>reaction</i> , major product is the more stable alkene with the highly substituted double bond	Syn-Ad- dition → added to <i>same side</i> of compound
E/Z System \rightarrow Prioritize the 2 groups attached to each carbon relative to one another. <i>Higher</i> priority groups are: cis/same side \rightarrow Z trans/opposite sides \rightarrow E	Anti-A- ddition → added to <i>different</i> <i>sides</i> of compounds

Formation of Grignard Reagent

Mg(0); THF (or Et₂O)

Forms Gignard Reagent (RMgX) Can be used to form C-C bonds

Substitution Reactions	
S _N 1 ^(Unimolecular)	S _N 2 ^{(Bimol-}
	ecular)
Mechanism → Two-step;	Mechanism \rightarrow
carbocation formation,	One-step;
nucleophilic attack	backside
	attack

By teganski

cheatography.com/teganski/

Substitution Reactions (cont)

Rate → Dependent only on substrate rate=k[R-X]	Rate → Dependent on <i>both</i> substrate & nucleophile rate=k[R-X][Nu-]
Stereochemistry → Racemic mixture	Stereochemistry → Inversion of config- uration
Preferred Conditions → Weak nucleophile, polar protic solvent Tertiary >	Preferred Conditions → Strong nucleophile, polar aprotic solvent Methyl > Primary >
Secondary > Primary	Secondary > Tertiary
Elimination Reactions	
E1 (Unimolecular)	E2 (Bimolecular)
Mechanism → Two- step; carbocation intermediate, base deprotonates	Mechanism → One-step; concerted β-H abstraction
Rate → Dependent <i>on</i> on substrate	<i>ly</i> Rate → Dependent on <i>both</i> substrate and base
Regiochemistry → Zaitsev's Rule (more substituted alkene favored)	Regiochemistry → Zaitsev's Rule (unless bulky base → Hofmann product)
Stereochemistry → Forms most stable alkene	Stereochemistry → Anti-peri- planar elimin- ation

Published 24th February, 2025. Last updated 2nd March, 2025. Page 8 of 8.

Elimination Reactions (cont)

Preferred Conditions	Preferred
→ Weak base, polar	Conditions \rightarrow
protic solvent	Strong base
	required
Tertiary > Secondary	Primary >
> Primary	Secondary >
	Tertiary
	(as long as β -H is
	anti-periplanar)

Nomenclature		
Functional	Suffix (Highest	Prefix (Lowest
Group	Priority)	Priority)
Alcohol (-	-ol	hydroxy-
OH)		
Alkyne	-yne	alkynyl-
Ether (R-	uses parent	alkoxy-
0-R')	name	
Epoxide	oxirane (cyclic	epoxy-
	naming)	

Key Naming Rules \rightarrow

Number the longest chain to give OH the lowest number

Number to give triple bond the lowest number, unless -OH is present