Organic Chemistry Exam 1 Cheat Sheet by teganski via cheatography.com/211266/cs/45736/ | Starting Material → Alkene | | | | | | |--|--|---|-----------------|--------------------|-----------| | Name | Reagents | Regiochemistry | Stereochemistry | Functional Outcome | Mechanism | | Hydrohalogenation
(HX Addition) | HX ^(HCI, HBr, HI) | Markovnikov
(X attaches to more substituted carbon) | Racemic | Alkyl Halide | * | | Hydrodrohalogenation (HX Addition with Peroxide) | HBr, ROOR ^(peroxide) | Anti-Markovnikov
(X attaches to less substituted carbon) | Racemic | Aklyl Halide | * | | Acid-Catalyzed Hydration | H_2SO_4 , H_2O (or H_3O^+) | Markovnikov | Racemic | Alcohol | | | Oxymercuration-Demurcuration | 1. Hg(OAc) ₂ , H ₂ O
2. NaBH ₄ | Markovnikov | Anti-Addition | Alcohol | | | Hydroboration-Oxidation | 1. BH ₃ , THF
2. H ₂ O, NaOH | Anti-Markovnikov | Syn-Addition | Alcohol | | By **teganski** cheatography.com/teganski/ Not published yet. Last updated 23rd February, 2025. Page 1 of 3. Sponsored by **CrosswordCheats.com**Learn to solve cryptic crosswords! http://crosswordcheats.com # Organic Chemistry Exam 1 Cheat Sheet by teganski via cheatography.com/211266/cs/45736/ | Starting Material → Alkene (cont) | | | | | |--|---|-------------|---------------|------------------| | Halogenation (X ₂ Addition) | X ₂ (Br ₂ , Cl ₂) | None | Anti-Addition | Vicinal Dihalide | | Halohydrin Formation | X ₂ , H ₂ O | Markovnikov | Anti-Addition | Halohydrin | | Hydrogenation | H ₂ , Pt/Pd/Ni | None | Syn-Addition | Alkane | | Dihydroxylation (Syn) | OsO_4 or $KMnO_4$ (cold, dilute), $NaHSO_3$ | None | Syn-Addition | Vicinal Diol | | Dihydroxylation (Anti) | 1. mCPBA
2. H ₃ O ⁺ | None | Anti-Additino | Vicinal Diol | | Ozonlysis | O₃ Me₂S (DMS) or Zn/H₂O | None | None | Aldehyde/Ketone | ### Ranking Radical Stability - 1. Benzylic/Allylic Radicals [MOST STABLE] - 2. Tertiary (3°) Radicals - 3. Secondary (2°) Radicals - 4. Primary (1°) Radicals - 5. Methyl Radicals Key Factors Affecting Stability: Resonance Stabilization (Allylic & Benzylic > Non-resonance stablized) Hyperconjugation (More alkyl groups donate electron density) Inductive Effects (Electron-withdrawing groups destabilize) | NBS
(Allylic Bromination) | Cl ₂ /hv
(Radical Chlori-
nation) | |--|---| | Selective Only abstracts the allylic hydrogen | Less selective
attacks all possible
C-H bonds | | Favors one major product due to resonance stabilization | More radical products due to no preference | | Highly Selective → Major product at most stable radical site | Non-selective → Multiple products | ### Arrow Pushing in Radical Reactions Fishhook Arrows → movement of 1 electron Initiation → arrows depict homolytic **Propagation** → 1 radical reacts to form **Termination** → 2 radicals combine to form a stable molecule #### Terms to Know cleavage Markovnikov's Rule \rightarrow Geminal \rightarrow 2addition reactions protonatomsadded to the carbon withbonded tothe most hydrogen atomsthe sameattachedside of the
carbon Anti-Markovnivkov's Rule \rightarrow Vicinal \rightarrow 2 addition reactions proton atoms added to the carbon with bonded to the least hydrogen atoms same carbon attached Zaitsev's Rule → elimination Syn-Addition reaction, major product is → added to the more stable alkene with same side of the highly substituted compound double bond ## Terms to Know (cont) E/Z System → Prioritize the 2 groups attached to each carbon relative to one another. Higher priority groups cis/same side \rightarrow Z trans/opposite sides \rightarrow E are: ### Oxidation State of Carbons **C-H bond** → carbon gains **-1** per hydrogen Anti-Addition → different sides of compounds added to C-C bond → no change (0) $C extsf{-X}$ bond $extsf{-}$ carbon loses $extsf{+1}$ per electronegative atom The **oxidation state** of a carbon atom depends on its **bonds** to atoms of different electronegativities | NMR | | |---------------------------|--------------------------| | ¹ H NMR | ¹³ C NMR | | Chemical Shift Trends | Chemical Shift Trends | | 0-2 ppm → Alkane | 0-50 ppm → Alkane | | 2-3 ppm → Allylic, | 50-100 ppm → | | benzylic, alkynyl | Alcohol, ether, | | | alkynes | | 4-6 ppm → Alkene | 100-150 ppm → | | | Aromatic, alkene | By teganski cheatography.com/teganski/ Not published yet. Last updated 23rd February, 2025. Page 3 of 3. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com # Organic Chemistry Exam 1 Cheat Sheet by teganski via cheatography.com/211266/cs/45736/ | NMR (cont | | | |-------------------------------|-------------------------------|--| | 6-8 ppm | 150-200 ppm Carbonyl | | | \rightarrow | (ketone, aldehyde, carboxylic | | | Aromatic | acid) | | | 9-10 ppm → Aldehyde | | | | 10-12 ppm → | | | | Carboxylic acid (broad) | | | | Splitting Patterns (n+1 rule) | | | | Singlet → no adjacent protons | | | | Doublet → 1 adjacent proton | | | | Triplet → 2 adjacent protons | | | | IR Spectroscopy | | | | Substitution Reactions (cont) | | |--|--| | Rate → Dependent only on substrate rate=k[R-X] | Rate → Dependent
on both substrate &
nucleophile
rate=k[R-X][Nu-] | | Stereochemistry → Racemic mixture | Stereochemistry → Inversion of configuration | | Preferred Conditions → Weak nucleophile, polar protic solvent | Preferred Conditions → Strong nucleophile, polar aprotic solvent | | Tertiary >
Secondary >
<i>Primary</i> | Methyl > Primary > Secondary > - Tertiary | | Elimination Reactions | | | Elimination Reactions (cont) | | | |---|---|--| | Regiochemistry → Zaitsev's Rule (more substituted alkene favored) | Regiochemistry → Zaitsev's Rule (unless bulky base → Hofmann product) | | | Stereochemistry → Forms most stable alkene | Stereochemistry → Anti-periplanar elimination | | | Preferred Conditions → Weak base, polar protic solvent | Preferred Conditions → Strong base required | | | Tertiary > Secondary
> <i>Primary</i> | Primary > Secondary > Tertiary (as long as β-H is anti-periplanar) | | | Key Peaks O-H (Alcohol) → 3200-3600 cm⁻¹ (broad) C-H (Alkanes) → 2800-3000 cm⁻¹ | |---| | C-H (Alkanes) → 2800-3000 cm ⁻¹ | | | | 1 | | C=O (Carbonyls) → ~1700 cm ⁻¹ | | C=C (Alkene) → ~1650 cm ⁻¹ | | C≡C , C≡N → ~2100-2200 cm ⁻¹ | | | | Starting Material → Alkyne | | | |----------------------------|--|--| | , | | | | | | | | | | | | O L CLC D | | | | Substitution Reactions | | |--|--| | S _N 1 ^(Unimolecular) | S _N 2 ^{(Bimol-}
ecular) | | | | | Mechanism → Two-step; | Mechanism → | | carbocation formation, | One-step; | | nucleophilic attack | backside | | | attack | | Elimination Reactions | | |-------------------------------|------------------| | E1 (Unimolecular) | E2 (Bimolecular) | | $\textbf{Mechanism} \to Two-$ | Mechanism → | | step; carbocation | One-step; | | intermediate, base | concerted β-H | | deprotonates | abstraction | | Rate → Dependent <i>only</i> | Rate → | | on substrate | Dependent on | | | both substrate | | | and base | | · | | C By **teganski** cheatography.com/teganski/ Not published yet. Last updated 23rd February, 2025. Page 4 of 3. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com