

# Organic Chemistry Exam 1 Cheat Sheet by teganski via cheatography.com/211266/cs/45736/

| Starting Material → Alkene                       |                                                                    |                                                             |                 |                    |           |
|--------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------|-----------------|--------------------|-----------|
| Name                                             | Reagents                                                           | Regiochemistry                                              | Stereochemistry | Functional Outcome | Mechanism |
| Hydrohalogenation<br>(HX Addition)               | HX <sup>(HCI, HBr, HI)</sup>                                       | Markovnikov<br>(X attaches to more substituted carbon)      | Racemic         | Alkyl Halide       | *         |
| Hydrodrohalogenation (HX Addition with Peroxide) | HBr, ROOR <sup>(peroxide)</sup>                                    | Anti-Markovnikov<br>(X attaches to less substituted carbon) | Racemic         | Aklyl Halide       | *         |
| Acid-Catalyzed Hydration                         | $H_2SO_4$ , $H_2O$ (or $H_3O^+$ )                                  | Markovnikov                                                 | Racemic         | Alcohol            |           |
| Oxymercuration-Demurcuration                     | 1. Hg(OAc) <sub>2</sub> , H <sub>2</sub> O<br>2. NaBH <sub>4</sub> | Markovnikov                                                 | Anti-Addition   | Alcohol            |           |
| Hydroboration-Oxidation                          | 1. BH <sub>3</sub> , THF<br>2. H <sub>2</sub> O, NaOH              | Anti-Markovnikov                                            | Syn-Addition    | Alcohol            |           |



By **teganski** cheatography.com/teganski/ Not published yet. Last updated 23rd February, 2025. Page 1 of 3. Sponsored by **CrosswordCheats.com**Learn to solve cryptic crosswords!
http://crosswordcheats.com



# Organic Chemistry Exam 1 Cheat Sheet by teganski via cheatography.com/211266/cs/45736/

| Starting Material → Alkene (cont)      |                                                                                       |             |               |                  |
|----------------------------------------|---------------------------------------------------------------------------------------|-------------|---------------|------------------|
| Halogenation (X <sub>2</sub> Addition) | X <sub>2</sub> (Br <sub>2</sub> , Cl <sub>2</sub> )                                   | None        | Anti-Addition | Vicinal Dihalide |
| Halohydrin Formation                   | X <sub>2</sub> , H <sub>2</sub> O                                                     | Markovnikov | Anti-Addition | Halohydrin       |
| Hydrogenation                          | H <sub>2</sub> , Pt/Pd/Ni                                                             | None        | Syn-Addition  | Alkane           |
| Dihydroxylation (Syn)                  | $OsO_4$ or $KMnO_4$ (cold, dilute), $NaHSO_3$                                         | None        | Syn-Addition  | Vicinal Diol     |
| Dihydroxylation (Anti)                 | 1. mCPBA<br>2. H <sub>3</sub> O <sup>+</sup>                                          | None        | Anti-Additino | Vicinal Diol     |
| Ozonlysis                              | <ol> <li>O<sub>3</sub></li> <li>Me<sub>2</sub>S (DMS) or Zn/H<sub>2</sub>O</li> </ol> | None        | None          | Aldehyde/Ketone  |

### Ranking Radical Stability

- 1. Benzylic/Allylic Radicals [MOST STABLE]
- 2. Tertiary (3°) Radicals
- 3. Secondary (2°) Radicals
- 4. Primary (1°) Radicals
- 5. Methyl Radicals

Key Factors Affecting Stability:

Resonance Stabilization (Allylic & Benzylic > Non-resonance stablized)

Hyperconjugation

(More alkyl groups donate electron density)

Inductive Effects

(Electron-withdrawing groups destabilize)

| NBS<br>(Allylic Bromination)                                 | Cl <sub>2</sub> /hv<br>(Radical Chlori-<br>nation)  |
|--------------------------------------------------------------|-----------------------------------------------------|
| Selective Only abstracts the allylic hydrogen                | Less selective<br>attacks all possible<br>C-H bonds |
| Favors one major product due to resonance stabilization      | More radical products due to no preference          |
| Highly Selective → Major product at most stable radical site | Non-selective → Multiple products                   |

### Arrow Pushing in Radical Reactions

Fishhook Arrows → movement of 1 electron
Initiation → arrows depict homolytic

**Propagation** → 1 radical reacts to form

**Termination** → 2 radicals combine to form a stable molecule

#### Terms to Know

cleavage

Markovnikov's Rule  $\rightarrow$ Geminal  $\rightarrow$  2addition reactions protonatomsadded to the carbon withbonded tothe most hydrogen atomsthe sameattachedside of the<br/>carbon

Anti-Markovnivkov's Rule  $\rightarrow$  Vicinal  $\rightarrow$  2 addition reactions proton atoms added to the carbon with bonded to the least hydrogen atoms same carbon attached

Zaitsev's Rule → elimination Syn-Addition
reaction, major product is → added to
the more stable alkene with same side of
the highly substituted compound
double bond

## Terms to Know (cont)

E/Z System → Prioritize the 2 groups attached to each carbon relative to one another. Higher priority groups

cis/same side  $\rightarrow$  Z trans/opposite sides  $\rightarrow$  E

are:

### Oxidation State of Carbons

**C-H bond** → carbon gains **-1** per hydrogen

Anti-Addition →

different sides

of compounds

added to

C-C bond → no change (0)

 $C extsf{-X}$  bond  $extsf{-}$  carbon loses  $extsf{+1}$  per electronegative atom

The **oxidation state** of a carbon atom depends on its **bonds** to atoms of different electronegativities

| NMR                       |                          |
|---------------------------|--------------------------|
| <sup>1</sup> H NMR        | <sup>13</sup> C NMR      |
| Chemical Shift Trends     | Chemical Shift Trends    |
| <b>0-2 ppm</b> → Alkane   | <b>0-50 ppm</b> → Alkane |
| <b>2-3 ppm</b> → Allylic, | 50-100 ppm →             |
| benzylic, alkynyl         | Alcohol, ether,          |
|                           | alkynes                  |
| <b>4-6 ppm</b> → Alkene   | 100-150 ppm →            |
|                           | Aromatic, alkene         |



By teganski cheatography.com/teganski/

Not published yet. Last updated 23rd February, 2025. Page 3 of 3. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com



# Organic Chemistry Exam 1 Cheat Sheet by teganski via cheatography.com/211266/cs/45736/

| NMR (cont                     |                               |  |
|-------------------------------|-------------------------------|--|
| 6-8 ppm                       | 150-200 ppm Carbonyl          |  |
| $\rightarrow$                 | (ketone, aldehyde, carboxylic |  |
| Aromatic                      | acid)                         |  |
| 9-10 ppm → Aldehyde           |                               |  |
| 10-12 ppm →                   |                               |  |
| Carboxylic acid (broad)       |                               |  |
| Splitting Patterns (n+1 rule) |                               |  |
| Singlet → no adjacent protons |                               |  |
| Doublet → 1 adjacent proton   |                               |  |
| Triplet → 2 adjacent protons  |                               |  |
| IR Spectroscopy               |                               |  |

| Substitution Reactions (cont)                                    |                                                                            |
|------------------------------------------------------------------|----------------------------------------------------------------------------|
| Rate → Dependent  only on substrate  rate=k[R-X]                 | Rate → Dependent<br>on both substrate &<br>nucleophile<br>rate=k[R-X][Nu-] |
| Stereochemistry → Racemic mixture                                | Stereochemistry → Inversion of configuration                               |
| Preferred  Conditions → Weak  nucleophile, polar  protic solvent | Preferred Conditions → Strong nucleophile, polar aprotic solvent           |
| Tertiary ><br>Secondary ><br><i>Primary</i>                      | Methyl > Primary > Secondary > - Tertiary                                  |
| Elimination Reactions                                            |                                                                            |

| Elimination Reactions (cont)                                      |                                                                       |  |
|-------------------------------------------------------------------|-----------------------------------------------------------------------|--|
| Regiochemistry → Zaitsev's Rule (more substituted alkene favored) | Regiochemistry → Zaitsev's Rule (unless bulky base → Hofmann product) |  |
| Stereochemistry → Forms most stable alkene                        | Stereochemistry  → Anti-periplanar elimination                        |  |
| Preferred Conditions  → Weak base, polar protic solvent           | Preferred Conditions → Strong base required                           |  |
| Tertiary > Secondary<br>> <i>Primary</i>                          | Primary > Secondary > Tertiary (as long as β-H is anti-periplanar)    |  |

| <ul> <li>Key Peaks</li> <li>O-H (Alcohol) → 3200-3600 cm<sup>-1</sup> (broad)</li> <li>C-H (Alkanes) → 2800-3000 cm<sup>-1</sup></li> </ul> |
|---------------------------------------------------------------------------------------------------------------------------------------------|
| <b>C-H (Alkanes)</b> → 2800-3000 cm <sup>-1</sup>                                                                                           |
|                                                                                                                                             |
| 1                                                                                                                                           |
| <b>C=O (Carbonyls)</b> → ~1700 cm <sup>-1</sup>                                                                                             |
| <b>C=C (Alkene)</b> → ~1650 cm <sup>-1</sup>                                                                                                |
| <b>C≡C</b> , <b>C≡N</b> → ~2100-2200 cm <sup>-1</sup>                                                                                       |
|                                                                                                                                             |

| Starting Material → Alkyne |  |  |
|----------------------------|--|--|
| ,                          |  |  |
|                            |  |  |
|                            |  |  |
| O L CLC D                  |  |  |

| Substitution Reactions                     |                                                |
|--------------------------------------------|------------------------------------------------|
| S <sub>N</sub> 1 <sup>(Unimolecular)</sup> | S <sub>N</sub> 2 <sup>(Bimol-</sup><br>ecular) |
|                                            |                                                |
| <b>Mechanism</b> → Two-step;               | Mechanism →                                    |
| carbocation formation,                     | One-step;                                      |
| nucleophilic attack                        | backside                                       |
|                                            | attack                                         |

| Elimination Reactions         |                  |
|-------------------------------|------------------|
| E1 (Unimolecular)             | E2 (Bimolecular) |
| $\textbf{Mechanism} \to Two-$ | Mechanism →      |
| step; carbocation             | One-step;        |
| intermediate, base            | concerted β-H    |
| deprotonates                  | abstraction      |
| Rate → Dependent <i>only</i>  | Rate →           |
| on substrate                  | Dependent on     |
|                               | both substrate   |
|                               | and base         |
| ·                             |                  |

C

By **teganski** cheatography.com/teganski/ Not published yet. Last updated 23rd February, 2025. Page 4 of 3. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com