Organic Chemistry Exam 1 Cheat Sheet by teganski via cheatography.com/211266/cs/45736/

Known Reacti	Known Reaction Pathways				
Reaction Type	Name	Functional Outcome	Key Reagents		
Oxidation					
	Alcohol Oxidation	1° OH → Aldehyde/Carboxylic acid 2° OH → Ketone	PCC (mild), CrO ₃ /H ₂ SO ₄ (strong), KMnO ₄		
	Ozonolysis	Cleaves Alkenes \rightarrow Aldehydes/Ketones	2. O ₃ 2. (CH ₃) ₂ S or Zn/H ₂ O		
	Benzylic Oxidation	Benzylic carbon \rightarrow Carboxylic acid	KMnO ₄ , heat		
Reduction					
	Catalytic Hydrogenation	Alkene/Alkyne → Alkane	H ₂ , Pt/Pd/Ni		
	Poisioned Hydrogenation	Alkyne → Cis-Alkene	H ₂ , Lindlar's Catalyst		
	Dissolving Metal Reduction	Alkyne → Trans-Alkene	Na, NH ₃		
	Carbonyl Reduction	Aldehyde → 1° OH Ketone → 2° OH	NaBH ₄ or LiAlH ₄		
Addition					
	Hydrohalogenation	Markovnikov addition of X	HX		
	Hydration	Markovnikov addition of OH	H ₂ O, H ₁ SO ₄		
	Hydroboration-Oxidation	Anti-Markovnikov addition of OH	1. BH ₃ , THF 2. H ₂ O ₂ , NaOH		
	Halogenation	Anti-Addition of X-X	X ₂		
	Hydrogenation	Syn-Addition of H-H	H ₂ , Pd/Pt		
Cyclization					
	Epoxidation	Alkene → Epoxide	mCPBA		
	Halohdrin Cyclization	Halohydrin → Epoxide	X ₂ , H ₂ O to NaOH		
Substitution					
	S _N 1	Forms Carbocation; Racemic	Weak nucleophile, Polar protic solvent		
	S _N 2	Inversion of Configuration	Strong nucleophile, polar aprotic solvent		
Elimination					
	E1	Carbocation intermediate, Zaitsev's Rule	Weak base, polar protic solvent		
С	By teganski cheatography.com/teganski/	Published 24th February, 2025. Last updated 2nd March, 2025. Page 1 of 8.	Sponsored by ApolloPad.com Everyone has a novel in them. Finish Yours! https://apollopad.com		

Organic Chemistry Exam 1 Cheat Sheet by teganski via cheatography.com/211266/cs/45736/

Known Reaction Pathways (cont)		
E2	Concerted, anti-periplanar	Strong base (NaOEt, NaOMe, tBuOK)
C-C Bond Formation		
Grignard Reaction	Adds R group to carbonyl	RMgX
Protecting Groups		
Alcohol Protection	$ROH \rightarrow ROTMS$	TMSCI, pyridine
Alcohol Deprotection	$ROTMS \to ROH$	TBAF

Starting Material $\rightarrow h$	Alkane				
Name	Reagents	Regiochemistry	Stereochemistry	Functional Outcome	Mechanism
Radical Haloge- nation	X ₂ , hv or heat	Tertiary > Secondary > Primary Selectivity	Racemic (if chiral)	Alkyl Halide	*
Allylic Bromin- ation	NBS, hv (or heat), CCl ₄	Selective for <i>allylic position</i> (next to a C=C bond)	Mixture if allylic radical is symmetric	Allylic Bromide	*
Benzylic Bromin- ation	NBS, hv (or heat), CCl ₄	Selective for *benzylic	None, unless chiral center formed	Benzylic Bromide	*
Benzylic Oxidation	1. KMnO ₄ or Na ₂ Cr ₂ O ₇ 2. H ₂ SO ₄ , heat	Oxidation occurs only at the <i>benzylic carbon</i>	None	Carboxylic acid	

Starting Material → Alkene						
Name	Reagents	Regiochemistry	Stereochemistry	Functional Outcome	Mechanism	
Hydrohalogenation (HX Addition)	HX ^(HCI, HBr, HI)	Markovnikov (X attaches to more substituted carbon)	Racemic	Alkyl Halide	*	
By teganski		Published 24th February, 2025.	Sponso	red by ApolloPad.com		

cheatography.com/teganski/

Published 24th February, 2025. Last updated 2nd March, 2025. Page 2 of 8.

Organic Chemistry Exam 1 Cheat Sheet by teganski via cheatography.com/211266/cs/45736/

Starting Material → Alkene (cont)				
Hydrodrohalogenation (HX Addition with Peroxide)	HBr, ROOR ^(peroxide)	Anti-Markovnikov (X attaches to less substituted carbon)	Racemic	Aklyl Halide *
Acid-Catalyzed Hydration	H_2SO_4 , H_2O (or H_3O^+)	Markovnikov	Racemic	Alcohol
Oxymercuration-Demurcuration	1. Hg(OAc) ₂ , H ₂ O 2. NaBH ₄	Markovnikov	Anti	Alcohol
Hydroboration-Oxidation	1. BH ₃ , THF 2. H ₂ O, NaOH	Anti-Markovnikov	Syn	Alcohol
Halogenation (X ₂ Addition)	X ₂ ^(Br₂, Cl₂)	None	Anti	Vicinal Dihalide
Halohydrin Formation	X ₂ , H ₂ O	Markovnikov	Anti	Halohydrin
Hydrogenation	H ₂ , Pt/Pd/Ni	None	Syn	Alkane
Dihydroxylation (Syn)	$OsO_4 \text{ or } KMnO_4 \text{ (cold, dilute), } NaHSO_3$	None	Syn	Vicinal Diol
Dihydroxylation (Anti)	1. mCPBA 2. H ₃ O ⁺	None	Anti	Vicinal Diol

By **teganski**

cheatography.com/teganski/

Published 24th February, 2025. Last updated 2nd March, 2025. Page 3 of 8.

Organic Chemistry Exam 1 Cheat Sheet by teganski via cheatography.com/211266/cs/45736/

Starting Material → Alkene (cont)					
Ozonlysis 1	. O ₃		None	None Aldehyde/Ketone	
2	. Me ₂ S (DMS) or Zn/H ₂ O				
Starting Material → Alkyne					
Name	Reagents	Regiochemistry	Stereochemistr	y Functional Outcome	Mechanism
Hydrohalogenation (HX Addition)	HX ^(HCl, HBr, HI) (1 or 2 equivalents)	Markovnikov	None	Alkyl Dihalide	*
Halogenation (H ₂ Addition	 X2 ^(Br2, Cl2) (1 or 2 equivalents) 	None	Anti	Vicinal Tetrahalide	*
Acid-Catalyzed Hydration	$HgSO_4; H_2SO_4, H_2O$	Markovnikov	None	Enol \rightarrow Ketone ^(tautomerization)	*
Hydroboration-Oxidation	1. 9-BBN or BH ₃ , THF 2. H ₂ O ₂ , NaOH	Anti-Markovnikov	Syn	Enol \rightarrow Aldehyde ^(tautomerization)	
Hydrogenation	H ₂ , Pt/Pd/Ni	None	Syn	Alkane	
Poisioned Hydrogenation	H ₂ , Lindlar's catalyst	None	Syn	Cis-alkan	
Dissolving Metal Reduction	n Na ⁰ or Li ⁰ ; NH ₃	None	Anti	Trans-alkene	
Ozonolysis	1. 03	None	None	Carboxylic acid	

Starting Material → Alcohol					
Name	Reagents	Regiochemistry	Stereochemistry	Functional Outcome	Mechanism

By **teganski** cheatography.com/teganski/

2. H₂O

Published 24th February, 2025. Last updated 2nd March, 2025. Page 4 of 8. Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

(CO₂ if terminal)

Starting Material → Alcohol (cont)					
Oxidation (^{Primary → Aldehyde)}	PCC/PDC, CH_2Cl_2 or (COCl_2), DMSO; Et_3N, CH_2Cl_2 (- 78 to 22°C)	N/A	N/A	Aldehyde	*
Oxidation (Primary → Carboxylic Acid)	1. Na ₂ Cr ₂ O ₇ 2. H ₂ SO ₄ , H ₂ O	N/A	N/A	Carboxylic acid	*
Williamson Ether Synthesis	1. NaH (or KH), 15-Crown-5 (or 18-C-6) 2. RX	N/A	N/A	Ether	*
Protecting Alcohol	TMSCI in Et ₃ N (or Pyridine)	None	Retained	Converts -OH to - OTMS	
Deprotecting Alcohols	TBAF or H_3O^+	Removes silly group from OH	Retained	Restores -OH	

C

By **teganski** cheatography.com/teganski/ Published 24th February, 2025. Last updated 2nd March, 2025. Page 5 of 8.

Organic Chemistry Exam 1 Cheat Sheet by teganski via cheatography.com/211266/cs/45736/

Starting Material → Alcohol (cont)						
Intramolecular W	illiamson Ether Synthesis	1. X ₂ ^(Br₂ or Cl₂) , H ₂ O	1. Markovnivkov	1. Anti	Converts halohydrin	→ Epoxide
		2. NaOH ^(or NaH, NaNH₂, KOH)	2. None	2. Inversion		
Secondary → Ketone	PCC/PDC, Swern, or Jone	s Oxidation				
Starting Material	→ Epoxide					
Name	Reagents	Regiochemistr	у	Stereochemistry	Functional Outcome	Mechanism
Acidic Opening	HX H ₂ O, H ₂ SO ₄ ROH (or RSH), H ₂ SO ₄	More substi	tuted carbon attack	Anti	Vicinal Diol	*
Basic Opening	1. NaCN (or NaSR, RMgE 2. H ₂ O (or NaOH)	3r, LiAlH ₄ , NaN ₃ Less substit	tuted carbon attack	Anti	Vicinal Diol	*

Ranking Radical Stability
1. Benzylic/Allylic Radicals [MOST STABLE]
2. Tertiary (3°) Radicals
3. Secondary (2°) Radicals
4. Primary (1°) Radicals
5. Methyl Radicals
Key Factors Affecting Stability: Resonance Stabilization (Allylic & Benzylic > Non-resonance stabilized)
Hyperconjugation (More alkyl groups donate electron density)
Inductive Effects (Electron-withdrawing groups destabilize)
Arrow Pushing in Radical Reactions
Fishhook Arrows \rightarrow movement of 1 electron
Initiation \rightarrow arrows depict homolytic cleavage
Propagation \rightarrow 1 radical reacts to form another
Termination \rightarrow 2 radicals combine to form a stable molecule

NBS (Allylic Bromination)	Cl₂/h∨ (Radical Chlori- nation)
<i>Selective</i> Only abstracts the allylic	Less selective attacks all possible
hydrogen	C-H bonds
Favors one major	More radical
product due to	products due to
resonance stabilization	no preference
Highly Selective →	Non-selective -
Major product at most	Multiple
stable radical site	products

Synthesis		
1. Identify Target Molecule	Determine functional groups & backbone	What is the most complex feature?
2. Work Backward	Identify possible precursors	What reactions introduce those functional groups?
3. Select Key Transf- ormations	Use known reaction pathways	Oxidation, Reduction, Substitution, Addition, Elimination
4. Consider Stereo- & Regio- Chemistry	Identify selective pathways	Anti vs Syn, Markovnikov vs Anti-Mark- ovnikov
5. Check for Side Reactions	Minimize unwanted byproducts	Use protecting groups if necessary
6. Verify Pathway	Double check feasibility & efficiency	Are reagents compatible? Do steps make sense?

Starting Material → Ether		
Name	Reagents	Functional
		Outcome
Acidic	xsHX ^(HBr or HI)	Alkyl
Cleavage	in heat	Halide

Oxidation State of Carbons C-H bond → carbon gains -1 per hydrogen C-C bond → no change (0) C-X bond → carbon loses +1 per electronegative atom

The **oxidation state** of a carbon atom depends on its **bonds** to atoms of different electronegativities

NMR	
¹ H NMR	¹³ C NMR
Chemical Shift Trends	Chemical Shift Trends
0-2 ppm → Alkane	0-50 ppm → Alkane
2-3 ppm → Allylic, benzylic, alkynyl	50-100 ppm → Alcohol, ether, alkynes
4-6 ppm → Alkene	100-150 ppm \rightarrow Aromatic, alkene
6-8 ppm → Aromatic	150-200 ppm Carbonyl (ketone, aldehyde, carboxylic acid)
9-10 ppm → Aldehyde	
10-12 ppm → Carboxylic acid (broad)	
Splitting Patterns (n+1 rule) Singlet → no adjacent protons Doublet → 1 adjacent proton Triplet → 2 adjacent protons	

IR Spectroscopy
Key Peaks
O-H (Alcohol) \rightarrow 3200-3600 cm ⁻¹ (broad)
C-H (Alkanes) \rightarrow 2800-3000 cm ⁻¹
C=O (Carbonyls) \rightarrow ~1700 cm ⁻¹
C=C (Alkene) → ~1650 cm ⁻¹
C≡C, C≡N → ~2100-2200 cm ⁻¹

Terms to	Know

Markovnikov's Rule →	Geminal $\rightarrow 2$
addition reactions proton	atoms
added to the <i>carbon</i> with	bonded to the
the most <i>hydrogen</i> atoms	<i>same side</i> of
attached	the carbon

By teganski cheatography.com/teganski/ Published 24th February, 2025. Last updated 2nd March, 2025. Page 7 of 8.

Organic Chemistry Exam 1 Cheat Sheet by teganski via cheatography.com/211266/cs/45736/

Terms to Know (cont)	
Anti-Markovnivkov's Rule → addition reactions proton added to the <i>carbon</i> with the least hydrogen atoms attached	Vicinal → 2 atoms bonded to <i>same</i> carbon
Zaitsev's Rule → <i>elimination</i> <i>reaction</i> , major product is the more stable alkene with the highly substituted double bond	Syn-Ad- dition → added to <i>same side</i> of compound
E/Z System \rightarrow Prioritize the 2 groups attached to each carbon relative to one another. <i>Higher</i> priority groups are: cis/same side \rightarrow Z trans/opposite sides \rightarrow E	Anti-A- ddition → added to <i>different</i> <i>sides</i> of compounds

Formation of Grignard Reagent

Mg(0); THF (or Et₂O)

Forms Gignard Reagent (RMgX) Can be used to form C-C bonds

Substitution Reactions	
S _N 1 ^(Unimolecular)	S _N 2 ^{(Bimol-}
	ecular)
$\textbf{Mechanism} \rightarrow \text{Two-step};$	$\textbf{Mechanism} \rightarrow$
carbocation formation,	One-step;
nucleophilic attack	backside
	attack

By teganski

cheatography.com/teganski/

Substitution Reactions (cont)

Rate → Dependent only on substrate rate=k[R-X]	Rate → Dependent on <i>both</i> substrate & nucleophile rate=k[R-X][Nu-]
Stereochemistry → Racemic mixture	Stereochemistry → Inversion of config- uration
Preferred Conditions → Weak nucleophile, polar protic solvent	Preferred Conditions → Strong nucleophile, polar aprotic solvent
Tertiary > Secondary > Primary	Methyl > Primary > Secondary > <i>Tertiary</i>
	(Pimeleouler)
E1 (Onimolecular)	E2 (Binolecular)
Mechanism → Two- step; carbocation intermediate, base deprotonates	Mechanism → One-step; concerted β-H abstraction
Rate → Dependent <i>onl</i> on substrate	y Rate → Dependent on <i>both</i> substrate and base
Regiochemistry → Zaitsev's Rule (more substituted alkene favored)	Regiochemistry → Zaitsev's Rule (unless bulky base → Hofmann product)
Stereochemistry → Forms most stable alkene	Stereochemistry → Anti-peri- planar elimin- ation

Published 24th February, 2025. Last updated 2nd March, 2025. Page 8 of 8.

Elimination Reactions (cont)

Preferred Conditions	Preferred
→ Weak base, polar	Conditions \rightarrow
protic solvent	Strong base
	required
Tertiary > Secondary	Primary >
> Primary	Secondary >
	Tertiary (as long as β-H is
	anti-periplanar)

Nomenclature		
Functional	Suffix (Highest	Prefix (Lowest
Group	Priority)	Priority)
Alcohol (- OH)	-ol	hydroxy-
Alkyne	-yne	alkynyl-
Ether (R-	uses parent	alkoxy-
0-R')	name	
Epoxide	oxirane (cyclic naming)	ероху-

Key Naming Rules \rightarrow

Number the longest chain to give OH the lowest number

Number to give triple bond the lowest number, unless -OH is present