Cheatography

Organic Chemistry Exam 1 Cheat Sheet by teganski via cheatography.com/211266/cs/45736/

Starting Material → Alkene					
Name	Reagents	Regiochemistry	Stereochemistry	Functional Outcome	Mechanism
Hydrohalogenation (HX Addition)	HX ^(HCI, HBr, HI)	Markovnikov (X attaches to more substituted carbon)	Racemic	Alkyl Halide	*
Hydrodrohalogenation (HX Addition with Peroxide)	HBr, ROOR ^(peroxide)	Anti-Markovnikov (X attaches to less substituted carbon)	Racemic	Aklyl Halide	*
Acid-Catalyzed Hydration	H_2SO_4 , H_2O (or H_3O^+)	Markovnikov	Racemic	Alcohol	
Oxymercuration-Demurcuration	1. Hg(OAc) ₂ , H ₂ O 2. NaBH ₄	Markovnikov	Anti-Addition	Alcohol	
Hydroboration-Oxidation	1. BH ₃ , THF 2. H ₂ O, NaOH	Anti-Markovnikov	Syn-Addition	Alcohol	

By teganski cheatography.com/teganski/ Not published yet. Last updated 23rd February, 2025. Page 1 of 3. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

Cheatography

Organic Chemistry Exam 1 Cheat Sheet by teganski via cheatography.com/211266/cs/45736/

Starting Material → Alkene (cont)				
Halogenation (X ₂ Addition)	X ₂ ^(Br₂, Cl₂)	None	Anti-Addition	Vicinal Dihalide
Halohydrin Formation	Х ₂ , Н ₂ О	Markovnikov	Anti-Addition	Halohydrin
Hydrogenation	H ₂ , Pt/Pd/Ni	None	Syn-Addition	Alkane
Dihydroxylation (Syn)	OsO_4 or KMnO ₄ (cold, dilute), NaHSO ₃	None	Syn-Addition	Vicinal Diol
Dihydroxylation (Anti)	1. mCPBA 2. H ₃ O ⁺	None	Anti-Additino	Vicinal Diol
Ozonlysis	1. O ₃ 2. Me ₂ S (DMS) or Zn/H ₂ O	None	None	Aldehyde/Ketone

Ranking Radical Stability

- 1. Benzylic/Allylic Radicals [MOST STABLE]
- 2. Tertiary (3°) Radicals
- 3. Secondary (2°) Radicals
- 4. Primary (1°) Radicals
- 5. Methyl Radicals

Key Factors Affecting Stability: **Resonance Stabilization** (Allylic & Benzylic > Non-resonance stabilized)

Hyperconjugation (More alkyl groups donate electron density)

Inductive Effects (Electron-withdrawing groups destabilize)

Number of Unique Products

NBS (Allylic Bromination)	Cl ₂ /hv (Radical Chlori- nation)
Selective	Less selective
Only abstracts the allylic	attacks all possible
hydrogen	C-H bonds
Favors one major	More radical
product due to	products due to
resonance stabilization	no preference

By teganski

cheatography.com/teganski/

Arrow Pushing in Radical Reactions

Fishhook Arrows \rightarrow movement of 1 electron

Initiation → arrows depict homolytic cleavage

Propagation \rightarrow 1 radical reacts to form another

Termination \rightarrow 2 radicals combine to form a stable molecule

Terms to Know

Markovnikov's Rule →	$\textbf{Geminal} \rightarrow 2$
addition reactions proton	atoms
added to the <i>carbon</i> with	bonded to
the most <i>hydrogen</i> atoms	the <i>same</i>
attached	<i>side</i> of the
	carbon
Anti-Markovnivkov's Rule →	Vicinal $\rightarrow 2$
addition reactions proton	atoms
added to the <i>carbon</i> with	bonded to
the least hydrogen atoms	same carbon
attached	
Zaitsev's Rule → elimination	Syn-Addition
<i>reaction</i> , major product is	\rightarrow added to
the more stable alkene with	<i>same side</i> of
the highly substituted	compound
double bond	

Not published yet. Last updated 23rd February, 2025. Page 3 of 3.

Terms to Know (cont)

E/Z System → Prioritize the 2 groups attached to each carbon relative to one another. *Higher* priority groups are: cis/same side → Z trans/opposite sides → E

Anti-Addition → added to *different sides* of compounds

Oxidation State of Carbons

 $\textbf{C-H} \text{ bond} \rightarrow \textbf{carbon gains -1} \text{ per hydrogen}$

C-C bond \rightarrow no change (0)

 $\label{eq:c-X-bond} \textbf{C-X-bond} \rightarrow \text{carbon loses +1 per electrone-} \\ \texttt{gative atom}$

The **oxidation state** of a carbon atom depends on its **bonds** to atoms of different electronegativities

NMR	
¹ H NMR	¹³ C NMR
Chemical Shift Trends	Chemical Shift Trends
0-2 ppm \rightarrow Alkane	0-50 ppm \rightarrow Alkane
2-3 ppm \rightarrow Allylic,	50-100 ppm →
benzylic, alkynyl	Alcohol, ether,
	alkynes
4-6 ppm → Alkene	100-150 ppm →
	Aromatic, alkene

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

Cheatography

Organic Chemistry Exam 1 Cheat Sheet by teganski via cheatography.com/211266/cs/45736/

NMR (cont)			S
6-8 ppm → Aromatic	150-200 ppm Carbonyl (ketone, aldehyde, carboxylic acid)		F c
9-10 ppm → Aldehyde			S
10-12 ppm → Carboxylic acid (broad)			F
Splitting Patt Singlet \rightarrow no Doublet \rightarrow 1 Triplet \rightarrow 2 a	t erns ^(n+1 rule) adjacent protons adjacent proton djacent protons		F c r
IR Spectroso	сору		5
Key Peaks			1
O-H (Alcoho	l) → 3200-3600 cm ⁻¹ (broad)		F
C-H (Alkane	s) → 2800-3000 cm ⁻¹		E
C=O (Carbonyls) → ~1700 cm ⁻¹			Ν
C=C (Alkene	e) → ~1650 cm ⁻¹	:	S
C≡C, C≡N →	~2100-2200 cm ⁻¹		i
			C
Starting Mate	erial → Alkyne		F

Substitution Reactions	
S _N 1 ^(Unimolecular)	S _N 2 ^{(Bimol-} ecular)
Mechanism → Two-step;	Mechanism
carbocation formation,	One-step;
nucleophilic attack	backside
	attack

By teganski

cheatography.com/teganski/

Substitution Reactions (cont)

Rate → Dependent only on substrate rate=k[R-X]	Rate → Dependent on <i>both</i> substrate & nucleophile rate=k[R-X][Nu-]
Stereochemistry → Racemic mixture	Stereochemistry → Inversion of config- uration
Preferred Conditions → Weak nucleophile, polar protic solvent	Preferred Conditions → Strong nucleophile, polar aprotic solvent
Tertiary > Secondary > Primary	Methyl > Primary > Secondary > <i>Tertiary</i>
Elimination Reactions	
E1 (Unimolecular)	E2 (Bimolecular)
Mechanism → Two- step; carbocation intermediate, base deprotonates	Mechanism → One-step; concerted β-H abstraction
Rate → Dependent or on substrate	nly Rate → Dependent on <i>both</i> substrate and base

Elimination Reactions (cont) $\textbf{Regiochemistry} \rightarrow$ Zaits (more

Zaitsev's Rule (unless bulky base →
Hofmann product)
Stereochemistry → Anti-periplanar elimination
Preferred Conditions → Strong base required
Primary > Secondary > Tertiary (as long as β-H is anti-periplanar)

 $\textbf{Regiochemistry} \rightarrow$

Not published yet. Last updated 23rd February, 2025. Page 4 of 3.

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com