

PSAT MAth Addition topics ch12 Cheat Sheet

by Jianmin Feng (taotao) via cheatography.com/79308/cs/20441/

Geometry references		
References		
circle	A=pi <i>r</i> ² ; <i>C</i> =2pi <i>r</i> : 2pi=360	
rectangular	A=Iw	
trangle	A=1/2bh	
	$c^2=a^2+b^2$; 3-4-5,5-12-13	
	s-s-ssqrt(2); x-xsqrt(3)-2x; 180=sum	
rectangular prism	V=lwh; sa=2(lw +lh+hw)	
cyclinder	V=pi*r ² h; sa=2pi rh +pirr	
cone	$V=pi*r^2h/3$	
triangular prism	V=lwh/3	
sphere	V=4pi*r ³ /3; sa=4pirr	

Line and angles

Triangles	
QUANDRILATE	ERAL
parallelogram	quadrilateral in which opposite sides are parallel
rectangule	a parallelogram in which all angles equal 90°
square	rectangle in which all angles and all sides are equal
TRIANGLES	
180 rules	A=bh/2
isosceles triangles	s1=s2
equilateral	60
pythagorean therorem	a2+b2=c2
	3;4;5, 5:12:13 rues
special right trangles	30-60-90: x-sqrt(3)x-2x (hypotenuse)
	45-45-90:x-x-sqrt(2)x
SOHCAHTOA	opposite, adjacent,hypotenuse
	SOH:sine=opposite/hypotenuse
	CAH:cos=Adjacent/hypotenuse
	TOA:tangent=opposite/- Adjacent
similar triangles	same shape(angles)
	diff size, same corres- ponding side ratio

Circles			
Circle	radius		
	diameter		
	chord: any line segment in side circle		
	arc:part of circumference(edge)		
	circumference=2pi *radius		
	area=pi <i>r</i> r		
Proportionality	Arc measure is proportional to interior angle measure, which is proportional to sector area.		
	An interior angle is an angle formed by two radii.		
	A sector is the portion of the circle between the two radii.		
tangents	OPN=90;oQN=90; PNQ=45,		
Equation	(x,y) is point of circle, (h,k) is the center, r is radius		
	xy plane: $(x-h)^2 + (y-k)^2 = r^2$		
What is the center of a circle with equation $x2 + y2 - 2x + 8y + 8 = 0$?			
Volume			
ref to equation of volumes			
Plug in or	n Genometry		
(Hidden)variable in choice answer			
180 rule for triangle			
outside an	outside angle=inner angle1+ingger angle2		

LINEs and ANGL	ES	
line,ray,line segment	0,1,2 ends	
supplementary angle	180=angle+suppleme- ntary angle	
vertical angle	cross line	
big/small angle	parallel line	
Being Aggressive on Geometry Problems: whenever you have a diagram, ask yourself What else do I know? write it down anyway.		
figures within mo shapes by extend figures, or combin	ding lines, overlapping ning several be on the lookout for the	
complicated shap	oes.	

a diagram, ask yourself What else do I		
know? write it down anyway.		
ETS is also fond of disguising familiar		
figures within more complex		
shapes by extending lines, overlapping		
figures, or combining several		
basic shapes. So be on the lookout for the		
basic figures hidden in		
complicated shapes.		

Not published yet. Last updated 2nd September, 2019. Page 1 of 2.

Sponsored by Readable.com Measure your website readability! https://readable.com

is its surface area?

A rectangular box is half as long as it is wide and one-third as wide as it is

tall. If the volume of the box is 96, then what

By Jianmin Feng (taotao) cheatography.com/taotao/

PSAT MAth Addition topics ch12 Cheat Sheet

by Jianmin Feng (taotao) via cheatography.com/79308/cs/20441/

imaginary and complex

sqrt(-1)	italicized i	
in	i ¹ =i; i ² +-1; i ³ =-i; i ⁴ =1	
	i ⁵ =i; i ⁶ +-1; i ⁷ =-i; i ⁸ =1	
complex number	a+bi	
	treat i as variable when do arithmetic	
	add/subtraction (distribute the minus sign)	
	multiplication: FOIL	

Summary

Be sure to review your basic geometry rules before the test; often, problems hinge on knowing that vertical angles are equal or that the sum of the angles in a quadrilateral is 360°.

On all geometry problems, draw figures out and aggressively fill in everything you know.

When two parallel lines are cut by a third line, the small angles are equal, the big angles are equal, and the sum of a big angle and a small angle is 180°.

The perimeter of a rectangle is the sum of the lengths of its sides. The area of a rectangle is length × width.

The perimeter of a triangle is the sum of the lengths of its sides. The area of a triangle is 1/2 base \times height.

Knowing the Pythagorean Theorem, common right triangles (such as 3-4-5 and 5-12-13), and special right triangles (45°-4-5°-90° and 30°-60°-90°) will help you figure out angles and lengths in a right triangle.

For trigonometry questions, remember SOHCAHTOA: sine=opposite/hypotenuse; cosin=adjacent/hypotenus; tangent=opposite/adjacent

Summary (cont)

Similar triangles have the same angles and their lengths are proportional.

The circumference of a circle is $2\pi r$. The area of a circle is $\pi r2$.

Circles that show an interior angle (an angle that extends from the center of the circle) have proportionality. The interior angle over the whole degree measure (360°) equals the same fraction as the arc enclosed by that angle over the circumference. Likewise, both of these fractions are equal to the area of the segment over the entire area of the circle.

When you see a line that is "tangent to" a circle, remember two things: The line touches the circle at exactly one point. The radius of the circle that intersects the tangent line is perpendicular (90°) to that tangent line.

The formulas to compute the volumes of many three-dimensional figures are supplied in the instructions at the front of both Math sections.

When plugging in on geometry problems, remember to use your knowledge of basic geometry rules; e.g., there are still 180° in a triangle when you're using Plugging In.

The imaginary number i = 1, and there is a repeating pattern when you raise i to a power: i, -1, -i, 1. When doing algebra with i, treat it as a variable, unless you are able to substitute -1 for i2 when appropriate.

By **Jianmin Feng** (taotao) cheatography.com/taotao/

Not published yet. Last updated 2nd September, 2019. Page 2 of 2. Sponsored by **Readable.com**Measure your website readability!
https://readable.com