Selection sort	
select min in array[0...] and put in array[0]	
select min in subarray [1...] \& put in array[1]	
...	
process	n -1
worst case=best case=average	$\begin{aligned} & n^{*} n=n-1+n- \\ & 2+\ldots+2+1 \end{aligned}$

Buble sort: swapping adjacent element, instead select and swap once. slower than selection sort in average, but best case is better (n instead n * n for select

Insertion sort	
$a[0]$ is treated as sorted part	$\operatorname{arr}[1 . .$.$] is treated as$ unsorted part
each unsorted is i order	rted into sorted part in
processes	n-1
worst case(reversed ordered)	n*
best case(sorted in order)	n

Merge sort	
1 split into 2 part	2 recursive sort left and right part
3 leaf node has 1 or 2 elements	4 and merge
disadvantage	temporary arrays, extra space
advantage	fast
process	nlog(n)
cost	n*log(n)
worst case=best	input not affect case=average

By Jianmin Feng (taotao)
cheatography.com/taotao/

Quick Sort

partition recursive sort array by
pivot value
scan from both end, swap the bigger on the left to the smaller on the right, until left and right reach the same index, then swap $a[$ pivotposition] with $a[0]$

best case	fastest sort
Worst case	split into 0,1..n-1 always,
	sorted array using a[0] as pivot
	become recursive selection
sort	

worst case is very inefficient

Compare Sort algorithm

for small n , select and insert sort used, $\mathrm{n} \sim=$ 7, machine dependent
for larger n , divide and conquer sort used, until reach a small number.
in Java, sort array with object type requires the object class must have compareTo() overriden

Sorting evaluation: CPU time, memory used, array size (Merge sort(larger)--> quick sort(small) --> <7 select/insert sort) sorting process and intermediate results -on test
comparison, swap or change, space requirement

Not published yet.
Last updated 17th May, 2019.
Page 1 of 1 .

Sequential search	
best case	1
worst case	n
average	$\mathrm{n} / 2$
be careful with the code: index	

Binary Search

Array must be sorted in searching key
if n is not power of $\quad \log (n)$ with n round two, worst case to $\operatorname{power}(\mathrm{z}, \mathrm{n})$ $>a[n-2],<a[1]$
if n is power(2), $\quad \log (\mathrm{n})+1$ worst case

$$
>a[n-2]
$$

<a[1] is $\log (n), 1$
less
fully understand the binary sort passes and cost.
The final is either equals an element a[middle] or not in the range. split subarray does not include a[mid]

Sponsored by ApolloPad.com

Everyone has a novel in them. Finish Yours!
https://apollopad.com

