
Java Class Design (OCA) Cheat Sheet
by Jianmin Feng (taotao) via cheatography.com/79308/cs/19394/

Inheri ​tance

Why inheri ​tan ​ce?

1. DRY(Don't Repeat Youself): No copy and
paste, use has a (compo ​sit ​ion), is a (inheri ​‐
tance)

2. Extens ​ible: easy to add/modify business
logic and share the code)

Java inheri ​tance

Single inheri ​tance, one parent only , all
instance variables and methods inheri ​tated

one parent could have multiple child classes

parent ​/su ​per ​/ge ​neric <- child/ ​sub ​/sp ​ecifc

Chaining constr ​uctor

Chaining constr ​uctor

child constr ​uctor call parent constr ​uctor

reasons 1: private parent instance variable

reasons 2:clean and neat:c ​ompare: loosen
restrict, add using setter(how about set is
not logically OK)

super() is always called explic ​itl ​y()or
implicitly in the first line of child constr ​uctor.
-> if a class will be extended, it must has no
argument constr ​uctor, or do not have any
constr ​uctor.

super.x ​xx(dot operation on super) won't
follow first line rule of constr ​uctor.

More on protec ​ted

Package private + subclass

parent ​/child +
different packages,
access protected
state/ ​beh ​avior from
parent

1) direct call 2)obj ref
of the child itself 3)
obj ref of parent or
other sub class can
NOT.

Overriding

in child change behavior of parent

1. same signature as parent

2. return type, same or subtype, primitive
exact the same(no promoting and wrap)

3. access ​ible: same or wider

4. exception: same or fewer/ ​sub ​typ ​e/r ​‐
untime

privat ​e/s ​tatic
methods are hidden,
not overriden

polymo ​rphism
applies only
instance method

super. (dot notation) to access parent state
or behavior

never hiding static member (variab ​le/ ​‐
method) or instance variable, bad practice,
confusing.

Covariant returns

overriding method return a same or subtype
of parent returned

exact the same for primitive return

Three Faces of Final

final variable Constant

enum constants
implicitly static final

constant used in
switch

final method no overriding

final class no extends,
java.l ​ang.String

Switch: litera ​l,c ​ons ​tan ​t,enum, compiler time
bind, variable or method return not, due to
not known how many cases should be
listed.

Class/ ​Object invocation order

1 static var=de ​fault child- ​>base

2 static{}, explicit value
assign to static var

base, in
statement
order

repeat 1,2 in child
hierarchy order

->child

4 instance var=de ​fault child- ​>base

5 {},exp ​licit value assign
to instance var

base, in
statement
order

6 constr ​uctor base

repeat 4,5,6 in child
hierarchy order

->child

static initia ​liz ​ation 1-3 execute only once
when first class is loaded.

Overlo ​ading

same name+d ​iff ​‐
erent parameters

Signat ​ure ​=na ​me+ ​par ​‐
am, ​unique in a class

Others ​(return type,m ​odi ​fiers, except ​ions)
not matter

overlo ​ading matching order:

exact match ->p ​rom ​oti ​ng- ​>wr ​apper =>v ​‐
arargs (exact match, ​pro ​mot ​ing ​,wr ​apper)

Private methods redecl ​aration

not inheri ​tated

can redecclare a method with same
signature

hiding static method

with static parent method, could not
override

hiding - no polymo ​rphism

4 overriding rules + static modifier

Never hiding static methods in practice,
confusing and bad habit

By Jianmin Feng (taotao)
cheatography.com/taotao/

Not published yet.
Last updated 5th May, 2019.
Page 1 of 3.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/taotao/
http://www.cheatography.com/taotao/cheat-sheets/java-class-design-oca
http://www.cheatography.com/taotao/
https://apollopad.com

Java Class Design (OCA) Cheat Sheet
by Jianmin Feng (taotao) via cheatography.com/79308/cs/19394/

Inherite variables

never overri ​ding, always hiding if same
name

when hiding a variables, using super and
this to access parent and child

static and non static follow the same rule for
hiding

private variables inherited but could not
access directly.

never hiding variables in practice, confusing
and hard to read code

Abstract classes

Why?

genera ​liz ​ation, inheri ​tance, overriding and
polymo ​rphism

simply code, beauty, no DRY

prevent improper instan ​tiate of parent
classes

Abstract class rules

>=0 abstract methods

can't initia ​lized

public /package private only, must be
extends, so private or final is not allowed,
protected is not logic/ ​mea ​ningful

extends abstract class means overriden all
abstracted methods or declared as abstract

first concrete class must have implem ​ented
all abstract method directly or indirectly

Abstract methods

in abstract class

can not be private, final, static (must be
overriden)

no body, even {}

Abstract classes (cont)

overriding rules(4) must be followed: same
signature, broader or same visibi ​lity,
narrower or same return type, narrower or
same exception throws/or runtime
exception

Interface

public abstract interface{}

public static final
MIN_DE ​PTH=3

init at the statement

interface extends
interf ​ace ​1,i ​nte ​rfa ​‐
ce2,...

multiple extends
allowed here

class inpluments
interf ​ace ​1,i ​nte ​rfa ​‐
ce2,...

multiple implements

can redecclare a method with same
signature

Rule for interf ​ace

can not instan ​‐
tiated

may have no methods
at all

public / default
only

not privat ​e,f ​inal,
protected for interface

all methods must
be public

not privat ​e,f ​inal,
protected for methods

abstract method
by default

in java8, default, static
methods with a body
allowed

default interface
methods

java 8

mainly for backward compat ​​ib ​ility

public default double calc(){}

Interface (cont)

only in interface can be redeclared as
abstract or overriden
with a different body

not static,
final,or abstract
(overriden)

not privat ​​e, ​p ​r ​ot ​​ected

Multiple inheri ​tance problem

default method in interface, if not overriden,
will cause compiler error if default methods
with same signuature existed

for interfaces without default methods, there
is no this issue

if default method is overriden, also no
ambiguity problem.

Static method java 8 above

public or default
only

with a body

call with
interface name,
not with object
ref

this avoid ambiguity
cause be multiple inheri ​‐
tance

static methods in interface could be
declared as default in sub interface

designed to offer utility functions

protected method in interface does not
makes sense as has nothing to be shared
with the subclass. it is just an interface.
muliple inheri ​tance of type:
https: ​//d ​ocs.or ​acl ​e.c ​om/ ​jav ​ase ​/tu ​tor ​ial ​/ja ​‐
va/ ​Ian ​dI/ ​mul ​tip ​lei ​nhe ​rit ​anc ​e.htm
https: ​//w ​ww.b ​ae ​ldu ​ng.c ​om ​/ja ​va- ​sta ​tic ​-de ​‐
fau ​lt- ​methods
https: ​//w ​ww.g ​ee ​ksf ​org ​eek ​s.o ​rg/ ​dif ​fer ​enc ​e-
b ​etw ​een ​-ab ​str ​act ​-cl ​ass ​-an ​d-i ​nte ​rfa ​ce- ​in- ​‐
java/

By Jianmin Feng (taotao)
cheatography.com/taotao/

Not published yet.
Last updated 5th May, 2019.
Page 2 of 3.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/taotao/
http://www.cheatography.com/taotao/cheat-sheets/java-class-design-oca
https://docs.oracle.com/javase/tutorial/java/IandI/multipleinheritance.htm
https://www.baeldung.com/java-static-default-methods
https://www.geeksforgeeks.org/difference-between-abstract-class-and-interface-in-java/
http://www.cheatography.com/taotao/
https://apollopad.com

Java Class Design (OCA) Cheat Sheet
by Jianmin Feng (taotao) via cheatography.com/79308/cs/19394/

Polymo ​rphism

heart of inheri ​tance (
overri ​din ​g+p ​oly ​mor ​‐
phism)

separate of
concern, flexib ​‐
le/ ​ext ​ensible
coding

properties of an object to take on many
different forms, ​com ​piling time- ref by super
class/ ​int ​erface ref, at run time multiple
behavi ​or, ​based on the object itself

multiple refere ​nces(on
the stack) (ref of type of
super class, interf ​ace),
static binding

multiple object
(on the heap
)behav ​iors,
dynamic binding

Virtual methods dynamic
method dispat ​‐
ching

overriden methods non privat ​e,s ​tat ​‐
ic, ​final

a method in which the specific implem ​ent ​‐
ation is not determined until run time; at
compiling time, parent ref is used, at run
time, implem ​ent ​ation based on the child obj
referenced

Object casting

implicit up casting (child ->p ​arent)

explicity down casting(parent ​->c ​hild)

error for non-pa ​ren ​t/child
object casting

safe casting:
obj1.i ​nst ​anc ​‐
eOf ​(obj2)

Poly ​morphic parame ​ters

parameter is parent class or interface type

Polymo ​rphism (cont)

passing the child obj or obj
implem ​ented the interface

auto up
casting

a reference variable may only send
messages that are available to its
type.being available to an object != being
declared inside an object

when Parent ​/Child not belong to same
package

in extending class

protected parent members could be access
directly. if by refere ​nces, only by the ref of
extending class itself

ref variables of other child class or event he
parent class COULD NOT access parent
members inside extending calss

cons ​tru ​cto ​r()

if constr ​uctor missing access modifier (
package private), the child class could not
instan ​tiated.

if class to be extends, constr ​uctor must be
public or protected, if in different package.

Pass by value vs by reference

Both are passing by copy

the original content (primitive value or
object memory address) variables not
affected

if passing a copy of obj address, changes to
the object on the heap will shared with all
refere ​nces.

reassign the reference in callee will not
affect the ref in caller

variable on stack frame, obj on heap

By Jianmin Feng (taotao)
cheatography.com/taotao/

Not published yet.
Last updated 5th May, 2019.
Page 3 of 3.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/taotao/
http://www.cheatography.com/taotao/cheat-sheets/java-class-design-oca
http://www.cheatography.com/taotao/
https://apollopad.com

	Java Class Design (OCA) Cheat Sheet - Page 1
	Inheri­tance
	Overriding
	Class/­Object invocation order
	Chaining constr­uctor
	Covariant returns
	Overlo­ading
	Three Faces of Final
	Private methods redecl­aration
	hiding static method

	Java Class Design (OCA) Cheat Sheet - Page 2
	Inherite variables
	Interface
	Abstract classes

	Java Class Design (OCA) Cheat Sheet - Page 3
	Polymo­rphism
	when Parent­/Child not belong to same package
	Pass by value vs by reference

