
Bash Cheat Sheet
by tanglisha via cheatography.com/25502/cs/22925/

Directing input/ output

Direct input fileCo nte nt= ‐
$(< fil ena ‐
me.txt)

Write all output to a file ls -lah >
filena me.txt

Append output to a file echo " hel lo"
>> filena ‐
me.txt

Redirect standard output
to filename

ls -lah 1>f ‐
ilename

Redirect and append
standard outpput to
filename

ls -lah 1>>
filename

Redirect stderr to filename ls -lah 2>f ‐
ilename

Redirect and append
stderr to filename

ls -lah 2>> fil ‐
ename

Redirect both stdout and
stderr to filename

ls -lah &> fil ‐
ename

Redirect stderr to stdout command
2>&1

Redirect stdout to stdout command
>&1

Redirect stdout to stderr command
>&2

Send output from one
command to input of
another

one command
| another

Misc

Inject .env into
your bash
session

export $(cat .env | xargs)

Prompt the user read -sp " Pro mpt "
varName

Read in
command line
options /
parameters

https: //l inu xco nfi g.o rg/ ‐
how -to -us e-g eto pts -to -
pa rse -a- scr ipt -op tions

Moving Around the Command Line

Forward one word %f

Back one word %b

Beginning of line ^a

End of line ^e

Editing the Command Line

Delete to end of line ^k

Delete from beginning of line to here ^u

Delete one letter backwards until
space

^w

Swap this and prev letter ^t

Swap this and prev word %t

Clear screen (Lower case L) ^l

Misc Command Line

Run command " cmd " in the
background

cmd &

Suspend the current process ^z

├-Bring that process back fg

└-Continue that process but in the
background

bg

Search prev commands (type and
it'll auto complete)

^r

└-No, not this one, a different one ^r
(again)

Arrays

Create a=(" one " " two " " thr ‐
ee" " fou r" " fiv e" " ‐
six ")

├- declare -a a

├- declare -a a=(" one "
" two " " thr ee")

├- a[inde x]= " one "

|-- a=($(echo " ${s pac ‐
e_d eli m_s tr} "))

└-Assign command
output to an array

files=($(ls))

Arrays (cont)

Add multiple
items

a+=("se ven " " eig ht" " ‐
nin e")

Copy b=(" ${a [@] }")

Print echo " ${a [@] }"

Length /Number
of elements

" ${# a[@]}"

Get an element
(Zero indexed)

" ${a [3] }"

Slice " ${a [@] :2: 4}"

Search (works
with regex) and
Replace

" ${a [@] /on e/z ero }"

Search and
Remove

" ${a [@] /tw o/} "

Delete an
element - leaves
a hole

unset " ${a [2] }"

Delete an
element - no hole

pos=3; a=(" ${a [@] :0: ‐
$po s}" " ${a [@] :$(($pos
+ 1))}")

Delete entire
array

unset a

Concat c=(" ${a [@] }" " ${b ‐
[@] }")

Load file content
into array

a=(`cat " fil ena me.t xt " `)

Loop through
array

for item in " ${a [@] }" ;
do ... done

└-by index for index in " ${! a[@]}" ;
do ... done

└-use a range
instead

for num in {8..45} ; do
... done

Always include the double quotes when
dealing with arrays. If you don't, there's a
good chance something will break unexpe ‐
ctedly.

If you try to take a slice from indexes that
don't exist in the array, you'll either get what
is there, or nothing if you completely miss
it. There will be no error.

By tanglisha
cheatography.com/tanglisha/

Not published yet.
Last updated 29th June, 2021.
Page 1 of 3.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/tanglisha/
http://www.cheatography.com/tanglisha/cheat-sheets/bash
https://linuxconfig.org/how-to-use-getopts-to-parse-a-script-options
http://www.cheatography.com/tanglisha/
https://readable.com

Bash Cheat Sheet
by tanglisha via cheatography.com/25502/cs/22925/

Parameter Expansion

If parameter is unset or null, the
expansion of word is substi tuted.
Otherwise, the value of parameter
is substi tuted.

${para
met ‐
er: -
word}

If parameter is unset or null, the
expansion of word is assigned to
parameter. The value of
parameter is then substi tuted.
Positional parameters and special
parameters may not be assigned
to in this way.

${para
met ‐
er: ‐
=word}

If parameter is null or unset, the
expansion of word (or a message
to that effect if word is not
present) is written to the standard
error and the shell, if it is not
intera ctive, exits. Otherwise, the
value of parameter is substi tuted.

${para
met ‐
er: ?
word}

If parameter is null or unset,
nothing is substi tuted, otherwise
the expansion of word is substi ‐
tuted.

${para
met ‐
er: ‐
+word}

Substring ${para
met ‐
er: off ‐
set :le ‐
ngth}

Last char in string ${para
met ‐
er: -
1:1}

Parameter Expansion (cont)

Expands to the names of
variables whose names begin
with prefix, separated by the first
character of the IFS special
variable. When ‘@’ is used and
the expansion appears within
double quotes, each variable
name expands to a separate
word.

${!pre ‐
fix*} or
${!pre ‐
fix@}

If name is an array variable,
expands to the list of array indices
(keys) assigned in name. If name
is not an array, expands to 0 if
name is set and null otherwise.
When ‘@’ is used and the
expansion appears within double
quotes, each key expands to a
separate word.

${!nam
e[@]}
or
${!nam
e[*]}

Hashes / Associ ative Arrays

Create declare -A a

└- declare -A a=(["ON E"]= " one "
["TW O"]= " two " ["TH REE "]="t hre ‐
e")

Set a
value

a["K EY"] ="va lue "

Print a
value

echo a[key]

Requires Bash 4 or higher. Doesn't seem to
work in OSX Catalina, even with the right
version of Bash. An altern ative that's less
awful than the <4 bash way is to use two
arrays with matching indexes.

if [" ${B ASH _VE RSI NFO :-0 }" -lt 4]; then ...
fi

Aside from creation, they work just like
regular arrays. When you use a key, it
doesn't

Truth checks

True if variable is set or
empty (No error if not
set)

[[-z ${varN ‐
ame+x}]]

True if variable is NOT
set

[[-n $varName
]]

True if variable is set
(Bash 4.5+)

[[-v $varName
]]

True if file exists [[-f /file/path]]

True if directory exists [[-d /direc tor ‐
y/path]]

True if symbolic link
exists

[[-L /symbo ‐
lic /li nk/path]]

Files

├- -e Exists

├- -d Directory

├- -f Non-di rectory
file

├- -r Readable file

├- -w Writeable file

├- -x Executable file

├- -L Symbolic link

├- -S Socket

└- -s File exists and
has nonzero
size

Brackets

Run commands in a
subshell

(ls -la)

Create an array x=(" a" " b" " c")

Split string on
character (space)

IFS=' ' names= ‐
("mary joe bob")

Integer arithmetic
(does not return result)

i=0; (($i += 1))

Interger arethe metic
(returns result)

i=$((1 + 1))

By tanglisha
cheatography.com/tanglisha/

Not published yet.
Last updated 29th June, 2021.
Page 2 of 3.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/tanglisha/
http://www.cheatography.com/tanglisha/cheat-sheets/bash
http://www.cheatography.com/tanglisha/
https://readable.com

Bash Cheat Sheet
by tanglisha via cheatography.com/25502/cs/22925/

Brackets (cont)

Process substi tution - pipe
the stdout of multiple
commands

comm <(ls -l)
<(ls -al)

Turn subshell command
result into string

echo "My
name is $(
whoami)"

Truthiness check (Use for
the -z -x -n type checks)

[-z $x]

True/False testing [[$a ~= /s/]]

Expansion mkdir
someth ing /{s ‐
ibl ing 1,s ibl ‐
ing 2,s ibl ing3}

Range {0..5} {0..8..2}

Command grouping [[$a ~= /s/]]
&& { echo " ‐
hey !"; echo " ‐
new lin e" }

Variables in a string "Some string
${vari abl e1: ‐
default
value} "

String manipu lation

├-Remove from the front,
matching the pattern */,
non-greedy # => /examp ‐
le.c om/wat

url=ht tps :// ‐
exa mpl e.c ‐
om/wat
${url#*/}

├-Remove from the front,
matching the pattern */,
greedy # => /wat

url=ht tps :// ‐
exa mpl e.c ‐
om/wat echo
${url##*/}

├-Remove from the back,
matching the pattern /*,
non-greedy # => https: //e ‐
xam ple.com

url=ht tps :// ‐
exa mpl e.c ‐
om/wat echo
${url%/*}

├-Remove from the back,
matching the pattern /*,
greedy # => https: //e xam ‐
ple.com

url=ht tps :// ‐
exa mpl e.c ‐
om/wat echo
${url%%/*}

Brackets (cont)

├-Replace pattern =>
ftp:// exa mpl e.com

url=ht tps :// exa mpl ‐
e.com echo ${url/ ‐
htt ps/ftp}

└-Global replace
pattern => https: //X ‐
xam plX.com

url=ht tps :// exa mpl ‐
e.com echo
${url/ /[e]/X}

Multiline string s/h ‐
eredocs

x=< <EOF ... many
lines ... EOF

By tanglisha
cheatography.com/tanglisha/

Not published yet.
Last updated 29th June, 2021.
Page 3 of 3.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/tanglisha/
http://www.cheatography.com/tanglisha/cheat-sheets/bash
https://example.com
https://example.com
ftp://example.com
https://xxamplx.com
http://www.cheatography.com/tanglisha/
https://readable.com

	Bash Cheat Sheet - Page 1
	Directing input/output
	Moving Around the Command Line
	Editing the Command Line
	Misc Command Line
	Arrays
	Misc

	Bash Cheat Sheet - Page 2
	Parameter Expansion
	Truth checks
	Hashes / Associative Arrays
	Brackets

	Bash Cheat Sheet - Page 3

