Cheatography

Basic notations				
K of	9 x 10 ⁹			
vacuum				
E	electric field			
q	charge			
r	distance between 2 charges			
а	radius of circle			
V	electrical potential due to a			
	point charge			
U	electric potential energy			

Electric field due t	to point charge
----------------------	-----------------

 $E = Kq/r^2$

E due to a spherical shell of cl	narge		
When point is outside the shell	$E = Kq/r^2$		
When point is inside the shell	E = 0		
When point is on the surface	E max = Kq/a ²		
here r is the distance between the centre of the circle and a point outside it			

E due to a nonconducting cha	rged sphere			
When point is outside the shell	$E = Kq/r^2$			
When point is inside the shell	E = Kqr/a ³			
When point is on the surface	E max = Kq/a ²			
here r is the distance between the centre of				

the circle and a point outside it

Electrical potential due to point charge V = Kq/r

V due to conducting charged sphere				
When point is outside the shell	V = Kq/r			
when point is inside the shell	V = Kq/a			
when point is on the surface	V = Kq/a			

t a	eve	iem	ot c	har	CIC.
1 0	373		UI U	лю	

1. 2 point charges -

- U = Kq1q2/r12
- 2.3 point charges -
- $\mathsf{U}=\mathsf{K}\;(\mathsf{q}1\mathsf{q}2/\mathsf{r}12+\mathsf{q}2\mathsf{q}3/\mathsf{r}23+\mathsf{q}1\mathsf{q}3/\mathsf{r}13)$

r12, r23, r13 are all distances between the corresponding charges

By Taneesha (Taneesha) cheatography.com/taneesha/ Published 30th September, 2023. Last updated 29th September, 2023. Page 1 of 1. Sponsored by Readable.com Measure your website readability! https://readable.com

Electrostatics Cheat Sheet by Taneesha (Taneesha) via cheatography.com/194359/cs/40527/