Cheatography

Basic notations					
K of vacuum	9 x 10 ⁹				
E	electric field				
q	charge				
r	distance between 2 charges				
а	radius of circle				
V	electrical potential due to a point charge				
U	electric potential energy				

Electric field due to	o point charge
-----------------------	----------------

 $E = Kq/r^2$

E due to a spherical shell of c	harge				
When point is outside the shell	$E = Kq/r^2$				
When point is inside the shell	E = 0				
When point is on the surface	E max = Kq/a ²				
here r is the distance between the centre of the circle and a point outside it					

E due to a nonconducting ch	arged sphere				
When point is outside the shell	E = Kq/r ²				
When point is inside the shell	E = Kqr/a ³				
When point is on the surface	E max = Kq/a ²				
here r is the distance between the centre of					

the circle and a point outside it

Electrical potential due to point charge V = Kq/r

V due to conducting charged sphe	ere
When point is outside the shell	V = Kq/r
when point is inside the shell	V = Kq/a
when point is on the surface	V = Kq/a

U	ot	2	C1	101	m	ot	ch	76	
	01		- 3				6		

1. 2 point charges -

- U = Kq1q2/r12
- 2.3 point charges -
- $\mathsf{U}=\mathsf{K}\;(\mathsf{q}1\mathsf{q}2/\mathsf{r}12+\mathsf{q}2\mathsf{q}3/\mathsf{r}23+\mathsf{q}1\mathsf{q}3/\mathsf{r}13)$

r12, r23, r13 are all distances between the corresponding charges

By Taneesha (Taneesha) cheatography.com/taneesha/ Published 30th September, 2023. Last updated 29th September, 2023. Page 1 of 1. Sponsored by Readable.com Measure your website readability! https://readable.com

Electrostatics Cheat Sheet by Taneesha (Taneesha) via cheatography.com/194359/cs/40527/