\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{syntaa} \pdfinfo{ /Title (physics-reviewer-1.pdf) /Creator (Cheatography) /Author (syntaa) /Subject (Physics Reviewer 1 Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{70091A} \definecolor{LightBackground}{HTML}{FAF7F7} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Physics Reviewer 1 Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{syntaa} via \textcolor{DarkBackground}{\uline{cheatography.com/177212/cs/37001/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}syntaa \\ \uline{cheatography.com/syntaa} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 9th February, 2023.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{3} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Inertia \& Torque}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Inertia}} - is defined as the tendency of an object at rest to remain at rest. \newline % Row Count 2 (+ 2) {\bf{Moment of Inertia}} - it is also known as rotational inertia, it is defined as the property of a rotating body to resist change in its state of rotation \newline % Row Count 6 (+ 4) {\bf{Radius of gyration (k)}} - it is the distance from an axis of rotation \newline % Row Count 8 (+ 2) {\bf{ Torque}} - it is the effectiveness of a force in rotating a body \newline % Row Count 10 (+ 2) {\emph{-{}-{}-{}-- Torque is a vector quantity, Torque is positive if it produce counterclockwise rotation. It is negative if it produce clockwise rotation -{}-{}-{}--}}% Row Count 13 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{The SI unit for the moment of inertia is {\emph{kg x m\textasciicircum{}2\textasciicircum{}}} \newline {\emph{Formula For Inertia}} - I = mr\textasciicircum{}2\textasciicircum{} \newline {\emph{Formula For Radius of Gyration}} - √ l/m \newline {\emph{Formula For Torque}} - τ = Fr} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Newton's Law of Gravitation}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Law of Gravitation}} - {\emph{that any particle of matter in the universe attracts any other with a force varying directly as the product of the masses and inversely as the square of the distance between them.}} \newline % Row Count 5 (+ 5) {\bf{Gravitational Field}} - defined as equal to the universal gravitational constant (G) times the objects mass, divided by the square of the distance. \newline % Row Count 8 (+ 3) {\bf{Gravitational Potential Energy}} - has been defined in a system consisting of the Earth and an object of mass.% Row Count 11 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Intensity of Waves}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Wave Intensity}} - power delivered per unit area. \newline % Row Count 2 (+ 2) {\bf{Superposition}} - the disturbance of waves are superimposed when they come together. \newline % Row Count 4 (+ 2) {\bf{Wave Interference}} - is a phenomenon that occurs when two waves meet while traveling along the same medium. \newline % Row Count 7 (+ 3) {\bf{ {\emph{Types of Superposition of waves}} }} \newline % Row Count 8 (+ 1) {\bf{1.) Constructive Interference}} - type of interference that occurs at any location along the medium where the two interfering waves have a displacement in the same direction. \newline % Row Count 12 (+ 4) {\bf{2.) Destructive Interference}} - if two waves superimpose with each other in opposite phase. \newline % Row Count 14 (+ 2) -{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-- \newline % Row Count 15 (+ 1) {\bf{Standing Waves}} - when the incident wave interferes with the reflected wave \newline % Row Count 17 (+ 2) {\bf{Nodes}} - point in a wave where the particles are relatively at rest. \newline % Row Count 19 (+ 2) {\bf{Antinodes}} - positions of maximum transverse displacement.% Row Count 21 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Formula for Intensity of Waves}} - l=P/2πr} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Pascal's Principle}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Pascal's Principle (Pascal's Law)}} - "statement that, in a fluid at rest in a closed container, a pressure change in one part is transmitted without loss to every portion of the fluid and to the walls of the container."% Row Count 5 (+ 5) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Zeroth Law of Thermodynamics}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Thermodynamics}} -refers to the study of energy that deals with heat, work and temperature. \newline % Row Count 2 (+ 2) \{\{nl\}\}{\bf{ {\emph{ Laws of Thermodynamics}} }} \newline % Row Count 3 (+ 1) {\bf{Zeroth Law of Thermodynamics}} - "states that if two thermodynamic systems are in thermal equilibrium with each other, and also separately in thermal equilibrium with a third system, then the three systems are in thermal equilibrium with each other." \newline % Row Count 9 (+ 6) -{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-- \newline % Row Count 10 (+ 1) {\bf{ {\emph{Temperature}} }} \newline % Row Count 11 (+ 1) {\emph{-It is the degree of hotness or coldness of an object-}} \newline % Row Count 13 (+ 2) {\bf{ {\emph{Temperature Scales}} }} \newline % Row Count 14 (+ 1) {\emph{Celsius}} - Introduced by Swedish astronomer Andres Celsius in 1742 \newline % Row Count 16 (+ 2) {\emph{Fahrenheit}} - Introduced by the 18th Century German physicist Daniel Gabriel Fahrenheit \newline % Row Count 18 (+ 2) {\emph{Kelvin}} - Named after the British psychiatrist William Thompson \newline % Row Count 20 (+ 2) {\emph{Rankine}} - Introduced by William Rankine \newline % Row Count 21 (+ 1) {\emph{Reaumur}} - Established by the French naturalist Rene-Antoine Ferchault Reaumur% Row Count 23 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Second Law of Thermodynamics and Entropy}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Second Law of Thermodynamics}} - "states that the state of entropy of the entire universe, as an isolated system, will always increase over time. The second law also states that the changes in the entropy in the universe can never be negative." \newline % Row Count 5 (+ 5) {\bf{Entropy}} - the measure of a system's thermal energy per unit temperature that is unavailable for doing useful work.% Row Count 8 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{The second law of thermodynamics shows that it is impossible to convert heat energy to mechanical energy with 100\% consistency.}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Rotational Quantities \& Static Equilibrium}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Rotation}} - refers to the motion of a body turning about an axis where each particle of the body moves along a circular path. \newline % Row Count 3 (+ 3) {\bf{ Angular Velocity}} - is defined as the rate at which angular displacement changes with time. \newline % Row Count 5 (+ 2) {\bf{Statics}} - it is concerned with the calculation of forces acting on and within structures that are in equilibrium. \newline % Row Count 8 (+ 3) {\bf{Static Equilibrium}} - defined as a body at rest having zero acceleration and zero net forces. \newline % Row Count 10 (+ 2) {\bf{ Center of gravity of a body}} - it is the point where its entire weight may be assumed to be concentrated. \newline % Row Count 13 (+ 3) {\bf{ Equilibrant}} - resultant of the forces acting on a body is not zero.% Row Count 15 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\emph{Angular Velocity may be expressed in deg/s, rad/s, or rev/s.}} \newline {\emph{Angular Acceleration may be expressed in deg/s\textasciicircum{}2\textasciicircum{}, rad/s\textasciicircum{}2\textasciicircum{}, or rev/s.\textasciicircum{}2\textasciicircum{}}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Oscillations and Waves}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Oscillatory Motion}} - is defined as a motion that is repeating itself. \newline % Row Count 2 (+ 2) {\bf{Frequency}} - it is Defined as the number of cycle in oscillation. \newline % Row Count 4 (+ 2) {\bf{Period}} - classified as the time it takes for an object to return to its position after undergoing Oscillation. \newline % Row Count 7 (+ 3) {\bf{Cycle}} - one complete oscillation. \newline % Row Count 8 (+ 1) {\bf{Simple Harmonic Motion}} - Refers to the back and forth movement through an equilibrium, or central, position. \newline % Row Count 11 (+ 3) {\bf{Spring Mass Oscillator}} \newline % Row Count 12 (+ 1) {\bf{Simple Pendulum}} - The simple pendulum is another mechanical system that moves in an oscillatory motion. It consists of a point mass 'm'. \newline % Row Count 15 (+ 3) -{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-- \newline % Row Count 16 (+ 1) {\bf{ {\emph{Types of Damped Oscillation}} }} \newline % Row Count 17 (+ 1) {\bf{Underdamped}} - An underdamped system moves fast and overshoot toward equilibrium. \newline % Row Count 19 (+ 2) {\bf{Overdamped}} - Overdamped system moves more slowly toward equilibrium. \newline % Row Count 21 (+ 2) {\bf{ Critically Damped}} - Critically Damped system moves more fast toward equilibrium without over shooting% Row Count 24 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Sound \& Doppler Effect}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Sound Wave}} - a pattern of disturbance caused by the movement of energy traveling through a medium (such as air, water or any other liquid or solid matter) as it propagates away from the source of the sound. \newline % Row Count 5 (+ 5) {\bf{Doppler Effects}} - is the apparent change in the frequency of the sound.% Row Count 7 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Archimedes Principle}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Archimedes Principle}} - "states that a body immersed in a fluid experiences an upthrust equal to the weight of the fluid displaced, and this is fundamental to the equilibrium of a body floating in still water." \newline % Row Count 5 (+ 5) {\bf{Buoyancy}} - is the tendency of an object to float in a fluid. All liquids and gases in the presence of gravity exert an upward force. \newline % Row Count 8 (+ 3) {\bf{Buoyant Force}} - the net upward force on any object in any fluid. \newline % Row Count 10 (+ 2) {\bf{Specific Gravity}} - the ration of the density of an object to a fluid.% Row Count 12 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{ {\emph{ NOTE}} }} \newline The object will rise to the surface and float if the {\bf{buoyant force is greater that the object's weight}} \newline The object will sink if the {\bf{buoyant force is less than the object's weight}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Thermal Expansion}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Thermal Expansion}} - is the tendency of matter to change its shape, area, volume, and density in response to a change in temperature. \newline % Row Count 3 (+ 3) {\bf{Linear Expansion}} - is the change in the length of a body when the temperature changes. \newline % Row Count 5 (+ 2) {\bf{Volume Expansion}} - is the change in the volume of a body when the temperature changes.% Row Count 7 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Kinematics}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Kinematics}} - description of motion. \newline % Row Count 1 (+ 1) {\bf{Rotation Angle}} When object rotate about its axis. \newline % Row Count 3 (+ 2) {\bf{Angular Speed}} - it is the rate of change of an angle. \newline % Row Count 5 (+ 2) {\bf{Angular velocity}} - it is a derivative of the change of angular displacement over a change of time. \newline % Row Count 8 (+ 3) {\bf{ Angular acceleration}} - change of angular velocity per unit time and measure in radians per second squared.% Row Count 11 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Oscillations and Waves (Types of Waves)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Mechanical Waves}} - Waves can occur whenever a system is disturbed from an equilibrium and when the disturbance can travel, or propagate, from one region of the system to another. \newline % Row Count 4 (+ 4) {\bf{ {\emph{Types of Mechanical waves}} }} \newline % Row Count 5 (+ 1) {\bf{ 1.) Transverse Waves}} - The vibration of the wave is at a right angle or perpendicular to the direction of the wave. \newline % Row Count 8 (+ 3) {\bf{ 2.) Longitudinal Waves}} - When the vibration of the medium is parallel to the direction of the waves. \newline % Row Count 11 (+ 3) {\bf{ {\emph{Types of waves}} }} \newline % Row Count 12 (+ 1) {\bf{Periodic Wave}} - Periodic Wave is a wave with a repeating continuous pattern that determine its wave length and frequency \newline % Row Count 15 (+ 3) {\bf{Sinusoidal Wave}} - Sine wave or Sinusoidal Wave is a periodic waveforms whose shape can be plotted using the sine or cosine function from trigonometry% Row Count 19 (+ 4) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{ {\emph{ Parts of Waves }} }} \newline {\bf{Crests}} - Highest point of a wave \newline {\bf{Troughs}} - Lowest point of a wave \newline \newline {\bf{ {\emph{Direction of Waves}} }} \newline {\bf{ Compression}} - Refers to the area where the coils are squeezed together \newline {\bf{Rarefraction}} - Refers to the area where the coils are spread out} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Pressure}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Pressure}} - is the push on the surface created by one or more forces. \newline % Row Count 2 (+ 2) {\emph{The {\bf{SI Unit}} of pressure is the {\bf{pascal (Pa)}} named after the French mathematician and physicist Blaise Pascal.}} \newline % Row Count 5 (+ 3) -{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-- \newline % Row Count 6 (+ 1) {\bf{ {\emph{Factors in Pressure}} }} \newline % Row Count 7 (+ 1) {\bf{1.) The magnitude of force applied}} \newline % Row Count 8 (+ 1) {\bf{2.) The area over which force is applied}}% Row Count 9 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{ {\emph{1 Pa = 1N/m\textasciicircum{}2\textasciicircum{}}} }}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Bernoulli's Principle}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Bernoulli's Principle}} - states that an increase in the speed of a fluid occurs simultaneously with a decrease in static pressure or a decrease in the fluid's potential energy.% Row Count 4 (+ 4) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{First Law of Thermodynamics}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{First Law of Thermodynamic}} - state that energy cannot be created nor destroyed, but it can be transferred. \newline % Row Count 3 (+ 3) {\bf{Thermodynamic System}} - Body of matter and/or radiation, confined in space by walls, with defined permeabilities, which separate it from its surroundings. The surroundings may include other thermodynamic systems. \newline % Row Count 8 (+ 5) -{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-- \newline % Row Count 9 (+ 1) {\bf{ {\emph{PV Diagrams}} }} \newline % Row Count 10 (+ 1) {\emph{-pressure-volume diagrams that illustrates the thermodynamic processes. This are graphs in which pressure is the y-axis and volume is the x-axis.-}} \newline % Row Count 13 (+ 3) {\bf{4 Process in PV Diagrams}} \newline % Row Count 14 (+ 1) {\bf{ {\emph{1.)Isobaric}} }} - An isobaric process is a process in which a gas is held by a constant pressure \newline % Row Count 17 (+ 3) {\bf{ {\emph{2.)Isochoric}} }} - Isochoric process is derived from the Greek words "iso" means "constant" and "Choric" means "space" or "volume". \newline % Row Count 20 (+ 3) {\bf{ {\emph{3.)Isothermal}} }} - In the isothermal process that temperature remains at constant. In this process the transfer of heat in the system happens so slowly \newline % Row Count 24 (+ 4) {\bf{ {\emph{4.)Adiabatic}} }} - The adiabatic process is the vice versa of the isothermal process. In which, there is no transfer of heat through the system.% Row Count 27 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}