\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{sxdnxy (sxdnxy)} \pdfinfo{ /Title (physics.pdf) /Creator (Cheatography) /Author (sxdnxy (sxdnxy)) /Subject (Physics Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{67A385} \definecolor{LightBackground}{HTML}{F5F9F7} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Physics Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{sxdnxy (sxdnxy)} via \textcolor{DarkBackground}{\uline{cheatography.com/145968/cs/32849/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}sxdnxy (sxdnxy) \\ \uline{cheatography.com/sxdnxy} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 29th June, 2022.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{3} \begin{tabularx}{5.377cm}{x{1.29402 cm} x{3.68298 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Representation of motion}} \tn % Row 0 \SetRowColor{LightBackground} Motion Diagram & Dots that are created in evenly spaced intervals. Larger gaps relate to larger velocity. \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \seqsplit{Position-Time} & Straight line represents constant velocity. Larger gradient large velocity. \tn % Row Count 7 (+ 3) % Row 2 \SetRowColor{LightBackground} Free body & Object is represented as a particle with tails representing forces. Tails represent direction and magnitude. \tn % Row Count 11 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.74655 cm} x{4.23045 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Newton's Laws of motion}} \tn % Row 0 \SetRowColor{LightBackground} 1st Law & If the forces are balanced then the object will maintain its current state of motion. \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} 2nd Law & Relationship stating net force is equal to the acceleration times mass. More mass means increased resistance to change in acceleration. \tn % Row Count 7 (+ 4) % Row 2 \SetRowColor{LightBackground} 3rd Law & Forces have action-reaction pairs which are equal in magnitude but opposite in direction. These forces act on different objects. \tn % Row Count 11 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.09494 cm} x{3.88206 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Thermal Physics}} \tn % Row 0 \SetRowColor{LightBackground} Heat & Transfer of thermal energy \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \seqsplit{Temperature} & The average speed of all of the particles \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Heat flow continues until the average kinetic energy of each atom is the same.} \tn % Row Count 5 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.69218 cm} x{3.28482 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Geometrical optics}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Electromagnetic waves come in different wavelengths. Some within the visible spectrum and some outside of it.} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Reflection and transmission of waves occur at any change in medium that the waves travel through.} \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} The law of reflection & The angle of incident light is equal to the reflected light \tn % Row Count 8 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Ray diagrams can be drawn to locate the position of the image} \tn % Row Count 10 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Light bends in relation to the normal when the medium changes.} \tn % Row Count 12 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Fast - Slow - Towards} \tn % Row Count 13 (+ 1) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Slow - Fast - Away} \tn % Row Count 14 (+ 1) % Row 7 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Refractive index and optical density both have an effect on light speed.} \tn % Row Count 16 (+ 2) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{The critical angle is when the refracted ray is 90 degrees to the normal. Meaning no light enters the second medium.} \tn % Row Count 19 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Vectors vs Scalars}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Scalars - Physical quantities with magnitude but no direction. Scalars can be negative. Some examples are temperature, speed, energy and time. \newline % Row Count 3 (+ 3) Vectors - Physical quantities with both magnitude and direction. Examples include forces, displacement, velocity and acceleration.% Row Count 6 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.64241 cm} x{3.33459 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Useful equation}} \tn % Row 0 \SetRowColor{LightBackground} Gravity & {\emph{F=mg}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} 2nd Law & {\emph{F= ma}} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} Velocity & {\emph{v= u + at}} \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} Displacement & {\emph{v= ut + 1/2 at\textasciicircum{}2\textasciicircum{}}} \tn % Row Count 4 (+ 1) % Row 4 \SetRowColor{LightBackground} Other & {\emph{v\textasciicircum{}2\textasciicircum{}=u\textasciicircum{}2\textasciicircum{}+2as}} \tn % Row Count 5 (+ 1) % Row 5 \SetRowColor{white} Kinetic energy & {\emph{KE=1/2mv\textasciicircum{}2\textasciicircum{}}} \tn % Row Count 7 (+ 2) % Row 6 \SetRowColor{LightBackground} Thermal change & {\emph{Q=mc(T2-T1)}} \tn % Row Count 9 (+ 2) % Row 7 \SetRowColor{white} Ohm's Law & {\emph{V=IR}} \tn % Row Count 10 (+ 1) % Row 8 \SetRowColor{LightBackground} Power & {\emph{P=VI}}, {\emph{P=I\textasciicircum{}2\textasciicircum{}R}}, {\emph{P=V\textasciicircum{}2\textasciicircum{}/R}} \tn % Row Count 12 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{v = final velocity \newline u = initial velocity \newline a = acceleration \newline g = gravitational acceleration \newline t = time \newline P = power \newline V = Voltage \newline I = Current \newline R = Resistance \newline T = temperature \newline c = heat capacity \newline s = distance} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.4931 cm} x{3.4839 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Waves}} \tn % Row 0 \SetRowColor{LightBackground} Logitudinal waves & Contractions caused by pushing and pulling \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} Transverse waves & Waves caused by up and down motions \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} Frequency & Number of crests in a given time \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} Period & Time between two identical points on a wave \tn % Row Count 8 (+ 2) % Row 4 \SetRowColor{LightBackground} Wavelength & Distance between two crests \tn % Row Count 9 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Speed increases in lower density and higher force mediums} \tn % Row Count 11 (+ 2) % Row 6 \SetRowColor{LightBackground} \seqsplit{Superposition} & Sum of the two waves at a specific point \tn % Row Count 13 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Wavelength multiplied by frequency is equal to speed of the wave} \tn % Row Count 15 (+ 2) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{If speed increases frequency stays constant, amplitude} \tn % Row Count 17 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.24425 cm} x{3.73275 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Motion}} \tn % Row 0 \SetRowColor{LightBackground} Time & Total time that has passed since t=0 \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} Time interval & Difference between two times \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} Distance & Movement of object including double backs (Scalar) \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} Position & Location of an object relative to origin (Vector) \tn % Row Count 8 (+ 2) % Row 4 \SetRowColor{LightBackground} \seqsplit{Displacement} & A change in position (Vector) \tn % Row Count 10 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} x{4.4793 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Energy}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Energy can be transferred across system boundaries through work, heat flow, or particle transfer.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} Work & External forces cause movement in a system. Positive work causes movement in the same direction. \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Initial energy and work must always be equal to final energy.} \tn % Row Count 7 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{0.9954 cm} x{3.9816 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Methods of heat transfer}} \tn % Row 0 \SetRowColor{LightBackground} \seqsplit{Radiation} & Transferred through collision of particles \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \seqsplit{Convection} & Occurs in fluids and relies on changes of density during heating. \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \seqsplit{Radiation} & Heat travelling in infrared waves that can pass through vacuums. \tn % Row Count 7 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.54287 cm} x{3.43413 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Electricity}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Positive charges can attract neutral objects} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} Voltage & potential difference - work done per unit charge \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} Ohmic vs non-ohmic & Ohmic resistors have constant resistant irrespective to the voltage across. \tn % Row Count 6 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{In series the voltage changes across resistors and bulbs. Current stays constant.} \tn % Row Count 8 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{In parallel current splits and voltage stays constant. The more resistance you add in parallel the more current will flow.} \tn % Row Count 11 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Voltage can be calculated by finding the previous voltage and subtracting IR of the resistor.} \tn % Row Count 13 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}