\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{sxdnxy (sxdnxy)} \pdfinfo{ /Title (basic-general-chemistry.pdf) /Creator (Cheatography) /Author (sxdnxy (sxdnxy)) /Subject (Basic general Chemistry Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{7790A3} \definecolor{LightBackground}{HTML}{F6F8F9} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Basic general Chemistry Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{sxdnxy (sxdnxy)} via \textcolor{DarkBackground}{\uline{cheatography.com/145968/cs/31494/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}sxdnxy (sxdnxy) \\ \uline{cheatography.com/sxdnxy} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Published 7th April, 2022.\\ Updated 7th April, 2022.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{3} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Ionization energy and Electronegativity}} \tn % Row 0 \SetRowColor{LightBackground} \{\{width=50\}\}Ionization energy is the energy required to remove one electron from an atom. The stronger the electrostatic attraction the harder it is to remove. & Electronegativity is the tendency of an atom in a bond to draw the bonding electron towards itself. \tn % Row Count 8 (+ 8) % Row 1 \SetRowColor{white} Ionization energy increases along periods and up groups. & Electronegativity follows the trend of ionization energy. \tn % Row Count 11 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Electronegativity only makes sense when an atom is in a bond and therefore is not very applicable to noble gases.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Balancing equation tips}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Simple equation?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Balance normally} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Combustion reaction? (CHO)} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Carbon, then hydrogen, then oxygen.} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Complex equation?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Simultaneous equations in which each substance has a variable, and an equation is written for each element.} \tn % Row Count 8 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{State symbols are also used. If a substance is in a solution it can be assumed to be aqueous. If an ionic solid is produced it can be called a precipitate.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.89126 cm} x{3.08574 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Bonding properties}} \tn % Row 0 \SetRowColor{LightBackground} Melting point\{\{width=30\}\} & Related to strong electrostatic attraction \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} Malleability & Whether the substance can be shaped or snaps. Depends on how the attraction changes when it is deformed or stressed. \tn % Row Count 7 (+ 5) % Row 2 \SetRowColor{LightBackground} Electrical conductivity & Needs mobile charged particles. \tn % Row Count 9 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{end of page}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn % Row Count 0 (+ 0) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.59264 cm} x{3.38436 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Reaction types}} \tn % Row 0 \SetRowColor{LightBackground} Combination & Two or more reactants come together to form a product \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \seqsplit{Decomposition} & A single reactant breaks into two or more products \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} Single \seqsplit{displacement} & A singular element displaces another element in a bond \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} Double \seqsplit{displacement} & Two substances break down and the cations and anions switch \tn % Row Count 9 (+ 3) % Row 4 \SetRowColor{LightBackground} Combustion & Reaction of oxygen with a fuel. When complete it produces carbon dioxide and water. \tn % Row Count 13 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Electrostatic attraction}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/sxdnxy_1649035966_download.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Coulomb's Law: describes the strength of the \newline force between two charged particles. \newline ● F = force \newline ● k = constant \newline ● q1 and q2 are the charges on the two particles \newline ● r = distance between them \newline \newline When charges increase the strength increases. When distance decreases strength increases.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{end of page}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn % Row Count 0 (+ 0) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Atom size}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Determined by the electrostatic attraction between the electrons and the protons in the nucleus. \newline % Row Count 2 (+ 2) Three determining factors: \newline % Row Count 3 (+ 1) - Nucleus charge (more protons, greater attraction) \newline % Row Count 5 (+ 2) - Distance from nucleus (more shells, less attraction) \newline % Row Count 7 (+ 2) - Shielding (more core electrons, less attraction) \newline % Row Count 9 (+ 2) The trend shows increasing atomic radii down groups and decreasing radii across periods.% Row Count 11 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Ions increase in size down a group (the same as atoms) \newline Decrease gradually in size from group 1 - 14, before jumping in size at group 15 before decreasing again.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Ionic bonding}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Ionic bonding occurs between a metal and a non metal ion with the electrostatic attraction between the ions. The electron will leave the low electronegative metal and move to the high electronegative non-metal.} \tn % Row Count 5 (+ 5) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Properties of ionic substances:\{\{nl\}\}- High melting point (strong bonds) \{\{nl\}\}- Brittle (when deformed ions repel)\{\{nl\}\}- Non-conductive when solid\{\{nl\}\}- Conductive when dissolved in water (aqueous)} \tn % Row Count 9 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Ionic substances are lattices as the bonds are non directional and exist all around the ion.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{end of page}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn % Row Count 0 (+ 0) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Covalent bonding}} \tn % Row 0 \SetRowColor{LightBackground} \{\{width=50\}\}Covalent bonding occurs between two non-metals that have high electronegativity. This means that neither atom wants to give up electrons and they rather share them. & The electrostatic attraction occurs between the positively charged nucleus and the negatively charged electrons. The positive nuclei will repel each other. \tn % Row Count 9 (+ 9) % Row 1 \SetRowColor{white} The electrons move around the two atoms freely however they spend most of the time in between. Unlike metallic bonds the electrons are unable to drift away. & In general the shorter the bond the stronger the electrostatic attraction. This is because the distance that balances the attractive and repulsive forces balance is shorter. \tn % Row Count 18 (+ 9) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Properties:} \tn % Row Count 19 (+ 1) % Row 3 \SetRowColor{white} Molecular covalent & Covalent lattice \tn % Row Count 20 (+ 1) % Row 4 \SetRowColor{LightBackground} -Low melting point\{\{nl\}\}-Brittle as solid, weak\{\{nl\}\}-Doesn't conduct & -High melting point\{\{nl\}\}-Brittle but strong\{\{nl\}\}-Doesn't conduct \tn % Row Count 24 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Covalent bonds are directional, the exist only between the involved atoms. Covalent bonds can come in molecules or lattices. As molecules there are exact numbers of atoms and the formula is precise. Lattices also called giant covalent or giant lattice are an indeterminate number of atoms. The formula is a ratio.\{\{ac\}\}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{end of page (copy)}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn % Row Count 0 (+ 0) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Lewis structures}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Shows the atoms involved in bonding.Only the valence electrons are shown.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{A single bond has two electrons and can be represented as two dots or one line.} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{The fewer the valence electrons the more bonds the atom can form.} \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{If the atom is smaller it usually forms stronger bonds, however if there are multiple bonding pairs it will be stronger.} \tn % Row Count 9 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Allotropes}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Atoms don't always bond the same way. An allotrope is a different bonding arrangement of a certain element.} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Different bonding at the atomic level leads to different properties on the macroscopic level.} \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Example 1: Carbon\{\{nl\}\}Diamond: three-dimensional tetrahedral lattice hard, strong, clear, nonconductive.\{\{nl\}\}Graphite: two-dimensional hexagonal lattice soft, grey, conductive.\{\{nl\}\}Amorphous carbon (coal, soot): no regular pattern, but three-dimensional bonding. soft, black, nonconductive} \tn % Row Count 11 (+ 6) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Example 2: Tin\{\{nl\}\}alpha-tin: covalent lattice structure like diamond grey, dull, crumbly\{\{nl\}\}beta-tin (stable above 13°C): metallic lattice Silvery-white, malleable.} \tn % Row Count 15 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{end of page (copy)}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn % Row Count 0 (+ 0) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Metallic bonding}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Metallic bonding occurs between two metals. Due to the low ionization energy metals lose their electron easily. The repulsion from the neighbouring ions repel while the electrons act as a glue pulling it together.} \tn % Row Count 5 (+ 5) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Properties:\{\{nl\}\}- Melting points vary (reflects range of bond strength)\{\{nl\}\}- Malleable (Electrons act as glue, whatever the shape)\{\{nl\}\}- Conductive (The electrons move freely)} \tn % Row Count 9 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Metals are lattices as the bonds are non-directional.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.89126 cm} x{3.08574 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Scientific notation and significant figures}} \tn % Row 0 \SetRowColor{LightBackground} Scientific notation & Count place values from new and old decimal point \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} Decimal notation & Count place values specified by the exponent \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} Significant figures & -Non zeros count\{\{nl\}\}-Captive zeros count\{\{nl\}\}-Leading zeros don't count\{\{nl\}\}-Trailing zeros after decimal count\{\{nl\}\} \tn % Row Count 11 (+ 6) % Row 3 \SetRowColor{white} Multiplying and dividing & Give your answer to the smallest number of sig figs given \tn % Row Count 14 (+ 3) % Row 4 \SetRowColor{LightBackground} Adding and subtracting & Give your answer to the number of decimal places used \tn % Row Count 17 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Mantissa's of scientific notation show the significant figures for a value.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{end of page (copy)}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn % Row Count 0 (+ 0) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Empirical formula}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{The empirical formula is the lowest whole-number ratio of atoms in a substance. For a lattice the empirical formula will be the same.} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{For molecular substances they will be expressed in a molecular formula which can sometimes be simplified.} \tn % Row Count 6 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{The empirical formula can be derived from mass percentages using the pneumonic:\{\{nl\}\}Percent to mass, Mass to moles, Divide by small Times 'til whole.} \tn % Row Count 10 (+ 4) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{We can find the molecular formula by finding the simplification factor which is the molecular molar mass divided by the empirical molar mass.} \tn % Row Count 13 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}