
Google Style for Python Cheat Sheet
by SunnyPhiladelphia via cheatography.com/122856/cs/22993/

ImportsImports

from __future__ import ... # if needed for P2
compatibility
import standard_package
import third_party_package as tpp # use abbrev‐
iation if standard
from x.y import z # z is a module
from x.y import z as t # z collides or too long

Don't import individual classes (except typing module).
Don't use relative paths.

__future____future__

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

If you actively need both P2 and P3, use six, future, past instead.

NamingNaming

module_name, package_name, method_name,
function_name, global_var_name, instance_var_name,
function_parameter_name, local_var_name;
_private_var_name;
ClassName, ExceptionName;
GLOBAL_CONSTANT_NAME.

Don't abbreviate too much.
Avoid one-char names for meaningful vars.

GlobalsGlobals

GLOBAL_CONSTANT = "Ok"
_global_variable = "Try to avoid"

Use special functions for external access to global vars.

Lambda functionsLambda functions

operator.mul # lambda x, y: x*y

For common operators use operator instead.
Ok for one-liners, otherwise use nested funcs.

ComprehensionsComprehensions

simple_case = [i for i in my_list if i > 3]
descriptive_name = [
 transform({'key': key, 'value':
value}, color='black')
 for key, value in generate_iterab‐
le(some_input)
 if complicated_condition_is_me‐
t(key, value)
]

Each portion must fit on the line and be readable.
Otherwise use a function or loop.

Conditional expressionsConditional expressions

simple_case = True if x > 3 else False
the_longest_ternary_style_that_can_b‐
e_done = (
 'yes, true, affirmative, confirmed,
correct'
 if predicate(value)
 else 'no, false, negative, nay')

Each portion must fit on the line and be readable.

True/False evaluationTrue/False evaluation

if seq # if len(seq) > 0
None checks:
x is None
x is not None

Use implicit False when possible.

Iterators & OperatorsIterators & Operators

for key in my_dict # for key in my_dict.keys()
for line in my_file # for line in my_file.read‐
lines()

Use default iterators and operators when supported.

By SunnyPhiladelphiaSunnyPhiladelphia

cheatography.com/sunnyphiladelphia/

Not published yet.
Last updated 26th May, 2020.
Page 1 of 2.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/sunnyphiladelphia/
http://www.cheatography.com/sunnyphiladelphia/cheat-sheets/google-style-for-python
http://www.cheatography.com/sunnyphiladelphia/
https://readable.com

Google Style for Python Cheat Sheet
by SunnyPhiladelphia via cheatography.com/122856/cs/22993/

String formattingString formatting

a + b # only simple cases
'name: %s; score: %d' % (name, n)
'name: {}; score: {}'.format(name, n)
f'name: {name}; score: {n}' # Python 3.6+
Long strings:
x = """If extra spaces
 are ok"""
x = ("If extra spaces "
 "are not ok")

Alternatively, use textwrap module.

DecoratorsDecorators

Only when there's a clear advantage.

Avoid @staticmethod (use a module-level function instead).

Avoid @classmethod (unless you're making a named construtor).

Clearly state that it's a decorator in its docstring.

Avoid external dependencies (files, db connections, etc).

PropertiesProperties

Use instead of get-set methods for common private vars.

Use @property and @...setter decorators.

If access is simple, use public vars instead.

ExceptionsExceptions

Custom names should end in Error.

Don't catch-all, unless you need to suppress or reraise it.

Minimize the code under try.

Use finally to clean up.

Use exceptions, not assert, to check user-provided args.

Docstrings and commentsDocstrings and comments

Modules, classes and functions should have docstrings. See full
guide for exceptions and details.

Explain tricky bits in comments. Don't literally describe the code.

For inline comments leave 2 spaces before and 1 space after #.

Stick to good English.

Type annotationType annotation

def func(a: int) -> List[int]: ...
x = SomeFunc() # type: SomeType

Encouraged.
Use pytype to type-check at build time.
See more rules in full guide.

MainMain

def main():
 ...
if __name__ == '__main__':
 main()

Any file should be importable without unwanted consequences.

OtherOther

Be consistent with existing codebase.

Use pylint or yapf for code formatting.

Add shebang to files that are executed.

If function >40 lines, consider splitting it.

Explicitly close files and sockets.
If with not possible, use contextlib.closing().

Inherit from object explicitly.

Use nested funcs only when needed.

Don't use mutable objects (e.g. lists) as default args.
Instead of [] use None, and set it to [] later.

By SunnyPhiladelphiaSunnyPhiladelphia

cheatography.com/sunnyphiladelphia/

Not published yet.
Last updated 26th May, 2020.
Page 2 of 2.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/sunnyphiladelphia/
http://www.cheatography.com/sunnyphiladelphia/cheat-sheets/google-style-for-python
http://www.cheatography.com/sunnyphiladelphia/
https://readable.com

	Google Style for Python Cheat Sheet - Page 1
	Imports
	Comprehensions
	__future__
	Conditional expressions
	Naming
	True/False evaluation
	Globals
	Iterators & Operators
	Lambda functions

	Google Style for Python Cheat Sheet - Page 2
	String formatting
	Docstrings and comments
	Type annotation
	Decorators
	Main
	Properties
	Other
	Exceptions

