
Lua Scripting 5.1 Cheat Sheet
by SrGMC via cheatography.com/62984/cs/16090/

TypesTypes

number

string

boolean

table

function

userdata

thread

nil

Variable type can be obtained with type(v‐type(v‐
ariable)ariable)
Note:Note: Table index starts at 0, but can be
extended to 0 or negative numbers

Arithmetic ExpressionsArithmetic Expressions

Sum +

Negation/Subtraction -

Product *

Division /

Modulo %

Power ^

Relational ExpressionsRelational Expressions

Equal to ==

Not equal to ~=

Less than <

Greater than >

Less than or equal to <=

Greater than or equal to >=

Logical OperatorsLogical Operators

not

and

or

Even though Lua does not have a Ternary
operator (condition ? truevalue : falsevalue),
we can use and and or to achieve a similar
effect:
value = (condition and truevalue
) or falsevalue
In this case and returns truevalue when the
condition is true and falsevalue otherwise

TablesTables

Tables are used with the table[key] syntax
Example:
> t = {foo="bar"} -- Same as t={["foo"]="‐
bar"}
> t.foo
bar
They can also be used as arrays
a = {1, 2, 3}
But in this case, index starts at 1
a = {[0]=1, [1]=2}
Tables can be extended to index 0 or even
negative numbers
Table size can be found with:
> a = {1, 2, 3}
> # a
3

Functions and modulesFunctions and modules

FunctionsFunctions
value = functionfunction(args) body endend
functionfunction functionName(args) body endend
Functions can be used as arguments:
functionfunction f(f2, arg1) f2(arg1) endend
Return skips other code below it
ModulesModules
A common module declaration usually is:
locallocal mymodule = {}
functionfunction mymodule.foo() printprint("bar") endend
returnreturn mymodule
As tables can have functions assigned to a
key.
To import it, just do:
> module = require("mymodule")
> module.foo()
bar
Also, you can make private functions by
putting local in front of the function declar‐
ation.

Math LibraryMath Library

math.abs(number)

math.acos(radians), math.asin(radians),
math.atan(radians)

math.ceil(number), math.floor(number)

math.cos(radians), math.sin(radians),
math.tan(radians)

math.deg(radians), math.rad(degrees)

math.exp(number), math.log(number)

math.min(num1, num2, ...), math.max(‐
num1, num2, ...)

math.sqrt(number)

math.random(), math.random(upper),
math.random(lower, upper)

math.randomseed(seed)

math.huge --represents infinity

math.pi

On trigonometric calculations, the number is
expressed as radians.
On math.random() lower and upper are
inclusive.
math.huge can be also represented with -
math.huge

Control StructuresControl Structures

if/else statementif/else statement
if (condition1) then
block
elseif (condition2) then
block
else
block
end
while loopwhile loop
while (condition) do
block
end
repeat looprepeat loop

repeat
block
until (condition)

Like while loop, but condition is inverted

http://www.cheatography.com/
http://www.cheatography.com/srgmc/
http://www.cheatography.com/srgmc/cheat-sheets/lua-scripting-5-1

By SrGMCSrGMC
cheatography.com/srgmc/

Published 13th June, 2018.
Last updated 13th June, 2018.
Page 1 of 3.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/srgmc/
https://apollopad.com

Lua Scripting 5.1 Cheat Sheet
by SrGMC via cheatography.com/62984/cs/16090/

Control Structures (cont)Control Structures (cont)

Numeric for loopNumeric for loop
for variable = start, stop, step do
block
end
Iterator for loopIterator for loop
for var1, var2, var3 in iterator do
block
end

Table LibraryTable Library

table.c
oncat‐
(table
[, sep
[, i [,
j]]])

Concatenate the elements of a
table to form a string. Each
element must be able to be
coerced into a string.

table.f
oreac‐
h(t‐
able,
f)

Apply the function f to the
elements of the table passed. On
each iteration the function f is
passed the key-value pair of that
element in the table. Apply the
function f to the elements of the
table passed. On each iteration
the function f is passed the key-
value pair of that element in the
table. Deprecated

Table Library (cont)Table Library (cont)

table.f‐
oreac‐
hi(‐
table,
f)

Apply the function f to the
elements of the table passed. On
each iteration the function f is
passed the index-value pair of that
element in the table. This is
similar to table.foreach() except
that index-value pairs are passed,
not key-value pairs. Deprecated

table.s
or‐
t(table
[,
comp])

Sort the elements of a table in-
place. A comparison function can
be provided to customise the
element sorting. The comparison
function must return a boolean
value specifying whether the first
argument should be before the
second argument in the
sequence.

table.i‐
nsert‐
(table,
[pos,]
value)

Insert a given value into a table. If
a position is given insert the value
before the element currently at
that position.

Table Library (cont)Table Library (cont)

table.r
em‐
ove‐
(table
[,
pos])

Remove an element from a table.
If a position is specified the
element at that the position is
removed. The remaining elements
are reindexed sequentially and the
size of the table is updated to
reflect the change. The element
removed is returned by this
function.

table.sort() example:table.sort() example:
> t = { 3,2,5,1,4 }
> table.sort(t, function(a,b) return a<b end)
> = table.concat(t, ", ")
1, 2, 3, 4, 5

StringString

string.byte(s
[, i [, j]])

Return the numerical code
the i-th through j-th character
of the string passed.

string.ch‐
ar(i1, i2, ...)

Generate a string repres‐
enting the character
numerical code passed as
arguments.

string.find(s,
pattern [,
index [,
plain]])

Find the first occurrence of
the pattern in the string
passed

string.fo‐
rmat(s, e1,
e2, ...)

Create a formatted string
from the format and
arguments provided. This is
similar to the printf("forma‐
t",...) function in C.

By SrGMCSrGMC
cheatography.com/srgmc/

Published 13th June, 2018.
Last updated 13th June, 2018.
Page 2 of 3.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/srgmc/
http://www.cheatography.com/srgmc/cheat-sheets/lua-scripting-5-1
http://www.cheatography.com/srgmc/
https://apollopad.com

Lua Scripting 5.1 Cheat Sheet
by SrGMC via cheatography.com/62984/cs/16090/

String (cont)String (cont)

string.gs‐
ub(s,
pattern,
replace [,
n])

Used simply it can replace
all instances of the pattern
provided with the replac‐
ement. A pair of values is
returned, the modified string
and the number of substi‐
tutions made. The optional
fourth argument n can be
used to limit the number of
substitutions made

string.len(s) Return the length of the
string passed.

string.lo‐
wer(s)

Make all the upper case
characters lower case.

string.up‐
per(s)

Make all the lower case
characters upper case.

string.match
(s, pattern [,
index])

Extract substrings by
matching patterns.

string.rep(s,
n)

Generate a string which is n
copies of the string passed
concatenated together.

string.rever‐
se(s)

Reverses a string.

String (cont)String (cont)

string.sub(s,
i [, j])

Return a substring of the
string passed. The substring
starts at i. If the third
argument j is not given, the
substring will end at the end
of the string. If the third
argument is given, the
substring ends at and
includes j.

All functions can be used directly in string
by changing string. to s:, s being the string
Example:
string.reverse("Test")
"Test":reverse()"

Classes. Table basedClasses. Table based

local Person = {}
Person.__index = Person
function Person.new(name,
surname)
 local self = setmetata‐
ble({}, Person)
 self.name = name
 self.surname = surname
 return self
end
function Person.setName(self,
name)
 self.name = name
end
function Person.getName(self)
 return self.name
end
function Person.setSurname(‐
self, surname)
 self.surname = surname
end
function Person.getSurname(‐
self)
 return self.surname
end
return Person
-- Import with ClassName =
require("classname")

Classes. Table based (cont)Classes. Table based (cont)

> -- Use with local i = ClassName.init(‐
params)

Faster to create. Does not have private
attributes

Classes. Closure/Instance BasedClasses. Closure/Instance Based

local function MyClass(init)
 local self = {
 public_field =
0
 }
 local private_field =
init
 function self.foo()
 return privat‐
e_field
 end
 function self.bar()
 private_field
= private_field + 1
 end
 return self
end
return MyClass
-- Import with MyClass =
require("MyClass")
-- Use with local i = MyClas‐
s(init)

Can have private attributes. Slower to
create

By SrGMCSrGMC
cheatography.com/srgmc/

Published 13th June, 2018.
Last updated 13th June, 2018.
Page 3 of 3.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/srgmc/
http://www.cheatography.com/srgmc/cheat-sheets/lua-scripting-5-1
http://www.cheatography.com/srgmc/
https://apollopad.com

	Lua Scripting 5.1 Cheat Sheet - Page 1
	Types
	Tables
	Math Library
	Arithmetic Expressions
	Functions and modules
	Relational Expressions
	Control Structures
	Logical Operators

	Lua Scripting 5.1 Cheat Sheet - Page 2
	Table Library
	String

	Lua Scripting 5.1 Cheat Sheet - Page 3
	Classes. Closure/Instance Based
	Classes. Table based

